Механизм мышечного сокращения видео

«Поворот и замок»: новая модель мышечного сокращения • Новости науки

Механизм мышечного сокращения видео

Почти всякая незыблемая общепринятая теория, которую с проклятьями зубрят школьники и которую устало и одинаково рассказывают учителя и даже профессора ВУЗов, при внимательном рассмотрении оказывается отнюдь не однозначной, захватывающей и полной загадок. К теории мышечного сокращения вышесказанное относится в полной мере.

В общих чертах она была разработана еще в 50-х годах прошлого века, и классический рисунок (рис. 1) с актиновыми и миозиновыми нитями до сих пор кочует из учебника в учебник. Однако реальная картина сокращения мышцы куда запутаннее, интереснее и непонятнее, со множеством подробностей и неожиданных действующих лиц и со сложными ролями, которые исполняют эти лица.

О новой и удивительной отрасли науки, находящейся на стыке физики, математики и биологии и изучающей механизмы мышечного сокращения, рассказали в своих лекциях на проходящей при поддержке РВК, Фонда «Династия» и РФФИ Зимней школе Future Biotech доктор физико-математических наук Андрей Кимович Цатурян и доктор биологических наук, заведующий Лабораторией биологической подвижности Института иммунологии и физиологии УрО РАН Сергей Юрьевич Бершицкий.

Азбучные истины

Начнем с азов — собственно, с классической теории мышечного сокращения. Базовая сократительная единица мышечной ткани называется саркомером. Края саркомера — Z-диски — состоят из переплетающихся нитей различных белков. К одному из этих белков цепляются актиновые микрофиламенты, вдоль которых тянутся регуляторные белки тропонин и тропомиозин (рис. 2).

Другой белок — титин, самый большой из известных в настоящее время белков, — крепится к соседнему участку Z-диска и служит длинной-длинной основой, с которой связываются молекулы белка миозина.

Таким образом, саркомер состоит из чередующихся тонких (образованных многочисленными молекулами актина и регуляторными белками) и толстых (состоящих из тоже многочисленных молекул миозина и вспомогательных белков) нитей.

И вот начинается кое-что интересное. Импульс, подошедший к нервно-мышечному соединению, вызывает повышение внутриклеточного уровня кальция.

Кальций присоединяется к регуляторным белкам, которые обматывали актин и загораживали его от миозина, в результате чего эти белки смещаются, и головка миозина, содержащая продукты гидролиза АТФ, приникает к молекуле актина.

В результате различных пертурбаций (которые подробно описаны ниже), миозин крепко сцепляется с актином и меняет свою конформацию, поворачивая хвост относительно головки и выплевывая продукты гидролиза.

Это происходит на множестве миозиновых головок и приводит к тому, что актиновая нить чуть-чуть сдвигается относительно миозиновой. Затем крепко сцепленный с актиновой нитью миозин связывается с АТФ, отцепляется от актина и претерпевает обратные конформационные изменения — то есть отворачивает хвост обратно (рис. 3).

Так, перебирая головками, миозиновые молекулы и обеспечивают работу мышцы.

Расслабление же мышц происходит тогда, когда к мышечной клетке перестал подходить импульс и в нее перестал поступать кальций.

Тогда отцепившиеся друг от друга актиновые и миозиновые нити постепенно возвращаются в свое первоначальное положение (отчасти благодаря эластичным свойствам молекул титина), и мышца расслабляется.

Вообще, способность миозина двигаться вдоль актиновой нити — это слишком удобное свойство, чтобы использовать его только для мышечного сокращения.

Поэтому множество различных видов миозина (их еще называют «миозиновыми моторами», их филогенетическое дерево показано на рис.

 4) применяется разными видами клеток для множества разнообразных функций — помимо собственно сокращения мышц они могут обеспечивать внутриклеточный транспорт, двигать трансмембранные белки и так далее (рис. 5).

Различные миозины сильно отличаются друг от друга по строению (рис. 6): они могут быть одноголовыми или двухголовыми, с длинными или короткими хвостами; однако главная функциональная часть — головка — имеет практически одинаковое строение у всех видов миозина. То есть принцип работы миозина одинаков во всех случаях, а детали (например, размер хвоста) обеспечивают ту или иную специализацию.

Миозины — это не единственные моторные белки. Помимо них существует еще два класса моторов — динеины и кинезины. В отличие от миозинов, которые двигаются по актиновой нити, динеины и кинезины бегают по микротрубочкам, причем динеины — только в одну сторону, а кинезины — только в противоположную.

Гипотеза рычага

Теперь пришло время подробней разобраться, что же происходит с миозином при мышечном сокращении. Начнем с общепринятой в настоящее время теории, известной под названием «Гипотеза рычага».

Посмотрим внимательнее на молекулу миозина (а конкретнее — самого удобного для исследований миозина II, рис. 7).

Понятно, что в головке миозина должно быть как минимум два важных места — одно, хватающееся за актин, и второе, в которое залезает АТФ.

Исследователи, работающие с миозином, остроумно назвали «актиновый» участок головки «пастью», а «АТФный» — «карманом». И пертурбации, происходящие с миозином, можно описать довольно грубым выражением: «закрой пасть и держи карман шире».

Дело в том, что, чтобы АТФный карман открылся и в него мог попасть АТФ, актиновая пасть должна быть закрыта (то есть миозин должен сидеть на актине): закрытая верхняя челюсть пасти оттягивает створку кармана, и тот открывается. АТФ влезает в широко раскрытый карман.

И вот тут начинается самое интересное. Гидролиз АТФ может происходить только в закрытом кармане, а для того, чтобы карман закрылся, должна открыться пасть — то есть миозин должен отвалиться от актина. Но это еще не всё. Чтобы обеспечить гидролиз, окрестности кармана должны немного перестроиться, сдвинуться.

Сдвигаясь, околокарманные участки вызывают небольшие изменения соседних областей, которые, в свою очередь, приводят к тому, что жесткий домен миозина под названием «конвертер» перебрасывается из одного устойчивого положения в другое и тянет за собой миозиновый хвост, отклоняя его на целых 60°. Курок взводится.

Теперь начинается следующий акт.

Миозин с карманом, набитым АДФ и фосфатом, должен обязательно прильнуть к актину и закрыть пасть, потому что иначе выплюнуть фосфат он не в состоянии (то есть чисто теоретически он его когда-нибудь выплюнет, но очень нескоро; поэтому миозин — это, по сути, актин-зависимая АТФаза).

Миозин сначала слабо связывается с актином при помощи электростатических взаимодействий, а затем запускается процесс закрытия пасти. Происходит это так.

В результате конформационных изменений миозиновая головка разворачивается к актиновой нити таким образом, что, во-первых, образует контакт, очень большой по площади (больше 18 нм2!), а во-вторых, миозин сцепляется сразу с двумя актиновыми молекулами с помощью гидрофобных и электростатических взаимодействий, в результате чего сродство миозина к актину оказывается в тысячу раз выше, чем при первом соединении.

Итак, миозин выплевывает фосфат и, крепко-накрепко вцепившись в актин, претерпевает обратные конформационные изменения — хвост его «выстреливает», сдвигается относительно головки.

Это происходит сразу на множестве молекул миозина и потому приводит к движению актиновой нити относительно миозиновой, а следовательно — и к сокращению мышцы. После этого АДФ выбрасывается из кармана.

Миозин остается сцеплен с актином; пасть его закрыта — даже заперта! — крепко-накрепко, и если клетка мертва и все АТФ в ней уже закончились, то на этом грустном моменте история заканчивается, миозин и актин так и остаются в навсегда сцепившемся, застывшем состоянии, а у организма начинается трупное окоченение.

Более оптимистичный сценарий, характерный для живой клетки с солидным запасом АТФ, предполагает, что в карман (который, как мы помним, головка с закрытой пастью держит шире) влезает новая молекула АТФ, пасть открывается, миозин отлипает от актина и цикл повторяется заново.

Roll and lock: поворачиваем и запираем

По гипотезе рычага, в мышечном сокращении существует только один момент генерации силы — когда поворачивается миозиновый хвост (рычаг). Однако некоторые данные рентгенографии и томографии мышц не то чтобы не согласуются с этой теорией, а свидетельствуют о том, что существует еще какой-то непонятный момент в сокращении мышцы, который гипотеза рычага не объясняет.

Поэтому группа исследователей под руководством А. К. Цатуряна предложила теорию мышечного сокращения под названием «Roll and lock» — «Поворачиваем и запираем» (см.: Michael A. Ferenczi et al., 2005. The «Roll and Lock» Mechanism of Force Generation in Muscle).

По этой теории, миозиновые головки садятся на актин еще до гидролиза АТФ, причем садятся не стройно и организованно, а как попало. На головке миозина есть длинный выступающий домен — «щуп», — который «нащупывает» подходящую себе (кислую и отрицательно заряженную) часть актиновой нити и прилипает к ней — как придется, под первым попавшимся углом.

Однако стоит произойти гидролизу АТФ, как миозин меняет свою конформацию, головки поворачиваются под нужным углом и крепко и четко, как ключ с замком, сцепляются с актиновой нитью, а из миозинового кармана выбрасывается фосфат. И вот только после этого происходит поворот рычага.

Иными словами, модель получается двухстадийной — на первом этапе головка миозина крепко и четко вцепляется в актин и при этом немного поворачивается, а на втором — поворачивается рычаг, причем сила, которая потом приведет к движению мышцы, генерируется на обоих этих этапах.

Помимо рентгеноструктурных и томографических данных, которые очень хорошо согласуются с теорией «Roll and lock», существует и несколько косвенных, но очень красивых доказательств ее правоты.

Например, известно, что во время мышечного сокращения, в том случае, если мышца не меняет свою длину, всего чуть более 40% миозиновых головок сидит на актине, а остальные болтаются ни к чему не присоединенными.

Однако когда сжатую мышцу насильно растягивают (например, такое бывает при беге, когда человек приземляется на напряженную мышцу), то жесткость мышцы резко увеличивается из-за того, что почти все свободные миозиновые головки резко сцепляются с актиновой нитью.

Однако, судя по рентгеноструктурным данным, сцепляются они отнюдь не «намертво», как ключ с замком, а просто как попало. Объяснить это можно как раз с помощью теории «Roll and lock».

Гидролиз АТФ при растяжении мышцы прекращается (оно и понятно: какой смысл тратить АТФ, если работа совершается не мышцей, а над мышцей), и все миозиновые головки переходят в состояние «активного актинового поиска» — их торчащий щуп ищет актиновую нить, нащупывает на ней подходящее место и сцепляется с ним — не крепко-накрепко, не как ключ с замком, а как попало. Однако для того, чтобы увеличить жесткость мышцы (и этим защитить кости от перелома) этого оказывается достаточно.

Итог

Гипотеза «Roll and lock» уточняет гипотезу рычага. Она лучше согласуется с экспериментальными данными и описывает мышечное сокращение более подробно.

Но совершенно точно можно сказать, что и эта теория может быть уточнена и расширена — однако каким именно образом, мы пока еще не знаем.

Мышечное сокращение, которое интенсивно и кропотливо исследуется уже многие годы, во многом по-прежнему остается неразгаданной загадкой.

иллюстрации:
1) 1. иллюстрация гипотезы рычага. Миозин цепляется к актиновой нити, вцепляется в нее, поворачивает хвост, затем отцепляется и возвращает хвост в прежнее положение. Кеннета Холмса.
2) 2.

иллюстрация гипотезы «Roll and lock».

Миозин вначале ищет подходящее положение на актиновой нити, затем слабо соединяется с ней, потом сцепляется крепко — при этом вся головка поворачивается и развивает некоторое усилие, и только затем поворачивается хвост. Мэри Риди.

Источники:1) Лекции А. К. Цатуряна и С. Ю. Бершицкого на Зимней школе FutureBiotech.

2) Н. А. Кубасова, А. К. Цатурян. Молекулярный механизм работы актин-миозинового мотора в мышце (PDF, 5,7 Мб) // Успехи биологической химии. 2011. Т. 51. С. 233–282 — относительно свежий, очень подробный и хорошо написанный русскоязычный обзор по теме, находится в свободном доступе.

3) К. Бэгшоу. Мышечное сокращение // М.: Мир. 1985.

4) Н. Б. Гусев. Молекулярные механизмы мышечного сокращения (PDF, 321 Кб) // Соросовский образовательный журнал, т. 6, №8, 2000. С. 24–32.

5) А. Н. Тихонов. Молекулярные моторы. Часть 2. Молекулярные основы биологической подвижности (PDF, 852 Кб) // Соросовский образовательный журнал, с. 18–24, 1999.

Вера Башмакова

Источник: https://elementy.ru/novosti_nauki/432005/Povorot_i_zamok_novaya_model_myshechnogo_sokrashcheniya

Как и почему мышцы сокращаются? Новая модель мышечного сокращения «Поворот и замок» ≪ Scisne?

Механизм мышечного сокращения видео

Рис. 1. Классическая картинка, показывающая структуру мышцы. Изображение с сайта ru.wikipedia.org

Почти всякая незыблемая общепринятая теория, которую с проклятьями зубрят школьники и которую устало и одинаково рассказывают учителя и даже профессора ВУЗов, при внимательном рассмотрении оказывается отнюдь не однозначной, захватывающей и полной загадок.

К теории мышечного сокращения вышесказанное относится в полной мере. В общих чертах она была разработана еще в 50-х годах прошлого века, и классический рисунок (рис. 1) с актиновыми и миозиновыми нитями до сих пор кочует из учебника в учебник.

Однако реальная картина сокращения мышцы куда запутаннее, интереснее и непонятнее, со множеством подробностей и неожиданных действующих лиц и со сложными ролями, которые исполняют эти лица.

О новой иудивительной отрасли науки, находящейся на стыке физики, математики и биологии и изучающей механизмы мышечного сокращения, рассказали в своих лекциях на проходящей при поддержке РВК, Фонда «Династия» и РФФИ Зимней школе Future Biotech доктор физико-математических наук Андрей Кимович Цатурян и доктор биологических наук, заведующий Лабораторией биологической подвижности Института иммунологии и физиологии УрО РАН Сергей Юрьевич Бершицкий.

иллюстрации:

Миозин цепляется к актиновой нити, вцепляется в нее, поворачивает хвост, затем отцепляется и возвращает хвост в прежнее положение. Кеннета Холмса.

Миозин вначале ищет подходящее положение на актиновой нити, затем слабо соединяется с ней, потом сцепляется крепко — при этом вся головка поворачивается и развивает некоторое усилие, и только затем поворачивается хвост. Мэри Риди.

Источники:

1) Лекции А. К. Цатуряна и С. Ю. Бершицкого на Зимней школе FutureBiotech.

2) Н. А. Кубасова, А. К. Цатурян. Молекулярный механизм работы актин-миозинового мотора в мышце // Успехи биологической химии. 2011. Т. 51. С. 233–282 — относительно свежий, очень подробный и хорошо написанный русскоязычный обзор по теме, находится в свободном доступе.

3) К. Бэгшоу. Мышечное сокращение // М.: Мир. 1985.

4) Н. Б. Гусев. Молекулярные механизмы мышечного сокращения // Соросовский образовательный журнал, т. 6, №8, 2000. С. 24–32.

5) А. Н. Тихонов. Молекулярные моторы. Часть 2. Молекулярные основы биологической подвижности // Соросовский образовательный журнал, с. 18–24, 1999.

Вера Башмакова
«Элементы»

Источник: https://scisne.net/a-1078

Механизм мышечных сокращений. Функции и свойства скелетных мышц

Механизм мышечного сокращения видео

Сокращение мышц — это сложный процесс, состоящий из целого ряда этапов. Главными составляющими здесь являются миозин, актин, тропонин, тропомиозин и актомиозин, а также ионы кальция и соединения, которые обеспечивают мышцы энергией. Рассмотрим виды и механизмы мышечного сокращения. Изучим, из каких этапов они состоят и что необходимо для цикличного процесса.

Мышцы

Мышцы объединяются в группы, у которых одинаковый механизм мышечных сокращений. По этому же признаку они и разделяются на 3 вида:

  • поперечно-полосатые мышцы тела;
  • поперечно-полосатые мышцы предсердий и сердечных желудочков;
  • гладкие мышцы органов, сосудов и кожи.

Поперечно-полосатые мышцы входят в опорно-двигательный аппарат, являясь его частью, так как помимо них сюда входят сухожилия, связки, кости. Когда реализуется механизм мышечных сокращений, выполняются следующие задачи и функции:

  • тело передвигается;
  • части тела перемещаются друг относительно друга;
  • тело поддерживается в пространстве;
  • вырабатывается тепло;
  • кора активируется посредством афферентации с рецептивных мышечных полей.

Из гладких мышц состоит:

  • двигательный аппарат внутренних органов, в который входят бронхиальное дерево, легкие и пищеварительная трубка;
  • лимфатическая и кровеносная системы;
  • система мочеполовых органов.

Физиологические свойства

Как и у всех позвоночных животных, в человеческом организме выделяют три самых важных свойства волокон скелетных мышц:

  • сократимость — сокращение и изменение напряжения при возбуждении;
  • проводимость — движение потенциала по всему волокну;
  • возбудимость — реагирование на раздражитель посредством изменения мембранного потенциала и ионной проницаемости.

Мышцы возбуждаются и начинают сокращаться от нервных импульсов, идущих от центров. Но в искусственных условиях используют электростимуляцию. Мышца тогда может раздражаться напрямую (прямое раздражение) или через нерв, иннервирующий мышцу (непрямое раздражение).

Виды сокращений

Механизм мышечных сокращений подразумевает преобразование химической энергии в механическую работу. Этот процесс можно измерить при эксперименте с лягушкой: ее икроножную мышцу нагружают небольшим весом, а затем раздражают легкими электроимпульсами.

Сокращение, при котором мышца становится короче, называется изотоническим. При изометрическом сокращении укорачивания не происходит. Сухожилия не позволяют при развитии мышцей силы укорачиваться.

Еще один ауксотонический механизм мышечных сокращений предполагает условия интенсивных нагрузок, когда мышца укорачивается минимальным образом, а сила развивается максимальная.

Структура и иннервация скелетных мышц

В поперечно-полосатые скелетные мышцы входит множество волокон, находящихся в соединительной ткани и крепящихся к сухожилиям. В одних мышцах волокна расположены параллельно длинной оси, а в других они имеют косой вид, прикрепляясь к центральному тяжу сухожильному и к перистому типу.

особенность волокна заключается в саркоплазме массы тонких нитей — миофибрилл. В них входят светлые и темные участки, чередующиеся друг с другом, а у соседних поперечно-полосатые волокна находятся на одном уровне — на поперечном сечении. Благодаря этому получается поперечная полосатость по всему волокну мышц.

Саркомером является комплекс из темного и двух светлых дисков, и он отграничивается Z-образными линиями. Саркомеры — это сократительный аппарат мышцы. Получается, что сократительное мышечное волокно состоит из:

  • сократительного аппарата (системы миофибрилл);
  • трофического аппарата с митохондриями, комплексом Гольджи и слабой эндоплазматической сетью;
  • мембранного аппарата;
  • опорного аппарата;
  • нервного аппарата.

Мышечное волокно разделяется на 5 частей со своими структурами и функциями и является целостной частью ткани мышц.

Иннервация

Этот процесс у поперечно-полосатых мышечных волокон реализуется посредством нервных волокон, а именно аксонов мотонейронов спинного мозга и головного ствола. Один мотонейрон иннервирует несколько волокон мышц.

Комплекс с мотонейроном и иннервируемыми мышечными волокнами называют нейромоторной (НМЕ), или двигательной единицей (ДЕ). Среднее число волокон, которые иннервирует один мотонейрон, характеризует величину ДЕ мышцы, а обратную величину называют плотностью иннервации.

Последняя является большой в тех мышцах, где движения небольшие и «тонкие» (глаза, пальцы, язык). Малое ее значение будет, напротив, в мышцах с «грубыми» движениями (например, туловище).

Иннервация может быть одиночной и множественной. В первом случае она реализуется компактными моторными окончаниями. Обычно это характерно для крупных мотонейронов. Мышечные волокна (называющиеся в этом случае физическими, или быстрыми) генерируют ПД (потенциалы действий), которые распространяются на них.

Множественная иннервация встречается, к примеру, во внешних глазных мышцах. Здесь не генерируется потенциал действия, так как в мембране нет электровозбудимых натриевых каналов.

В них распространяется деполяризация по всему волокну из синаптических окончаний. Это необходимо для того, чтобы привести в действие механизм мышечного сокращения.

Процесс здесь происходит не так быстро, как в первом случае. Поэтому его называют медленным.

Структура миофибрилл

Исследования мышечного волокна сегодня проводятся на основе рентгеноструктурного анализа, электронной микроскопии, а также гистохимическими методами.

Рассчитано, что в каждую миофибриллу, диаметр которой составляет 1 мкм, входит примерно 2500 протофибрилл, то есть удлиненных полимеризованных молекул белков (актина и миозина). Актиновые протофибриллы в два раза тоньше миозиновых. В покое эти мышцы находятся так, что актиновые нити кончиками проникают в промежутки между миозиновыми протофибриллами.

Узкая светлая полоса в диске А свободна от актиновых нитей. А мембрана Z скрепляет их.

На миозиновых нитях есть поперечные выступы длиной до 20 нм, в головках которых находится порядка 150 молекул миозина. Они отходят биополярно, и каждая головка соединяет миозиновую с актиновой нитью.

Когда происходит усилие актиновых центров на нитях миозина, актиновая нить приближается к центру саркомера. В конце миозиновые нити доходят до линии Z. Тогда они занимают собой весь саркомер, а актиновые находятся между ними.

При этом длина диска I сокращается, а в конце он исчезает полностью, вместе с чем линия Z становится толще.

Так, по теории скользящих нитей, объясняется сокращение длины волокна мышцы. Теория, получившая название «зубчатого колеса», была разработана Хаксли и Хансоном в середине двадцатого века.

Механизм мышечного сокращения волокна

Главным в теории является то, что не нити (миозиновые и актиновые) укорачиваются. Длина их остается неизменной и при растяжении мышц. Но пучки тонких нитей, проскальзывая, выходят между толстыми нитями, уменьшается степень их перекрытия, таким образом происходит сокращение.

Молекулярный механизм мышечного сокращения посредством скольжения актиновых нитей заключается в следующем. Миозиновые головки соединяют протофибриллу с актиновой. При их наклонах происходит скольжение, двигающее актиновую нить к центру саркомера. За счет биполярной организации миозиновых молекул на обеих сторонах нитей создаются условия для скольжения актиновых нитей в разные стороны.

При расслаблении мышц миозиновая головка отходит от актиновых нитей. Благодаря легкому скольжению расслабленные мышцы растяжению сопротивляются гораздо меньше. Поэтому они пассивно удлиняются.

Этапы сокращения

Механизм мышечного сокращения кратко можно подразделить на следующие этапы:

  1. Мышечное волокно стимулируется, когда потенциал действия поступает от мотонейронов из синапсов.
  2. Потенциал действия создается на мембране мышечного волокна, а затем распространяется к миофибриллам.
  3. Совершается электромеханическое сопряжение, представляющее собой преобразование электрического ПД в механическое скольжение. В этом обязательно участвуют ионы кальция.

Для лучшего понимания процесса активации волокна ионами кальция удобно рассмотреть структуру актиновой нити. Длина ее составляет порядка 1 мкм, толщина — от 5 до 7 нм. Это пара закрученных ниток, которые напоминают мономер актина. Примерно через каждые 40 нм здесь находятся сферические тропониновые молекулы, а между цепями — тропомиозиновые.

Когда ионы кальция отсутствуют, то есть миофибриллы расслабляются, длинные тропомиозиновые молекулы блокируют крепление актиновых цепей и мостиков миозина. Но при активизации ионов кальция тропомиозиновые молекулы опускаются глубже, и участки открываются.

Тогда миозиновые мостики прикрепляются к актиновым нитям, а АТФ расщепляется, и сила мышц развивается. Это становится возможным за счет воздействия кальция на тропонин. При этом молекула последнего деформируется, проталкивая тем самым тропомиозин.

Когда мышца расслаблена, в ней на 1 грамм сырого веса содержится больше 1 мкмоль кальция. Соли кальция изолированы и находятся в особых хранилищах. В противном случае мышцы бы все время сокращались.

Хранение кальция происходит следующим образом. На разных участках мембраны клетки мышцы внутри волокна имеются трубки, через которые происходит соединение со средой вне клеток. Это система поперечных трубочек.

А перпендикулярно ей находится система продольных, на концах которых — пузырьки (терминальные цистерны), расположенные в непосредственной близости к мембранам поперечной системы. Вместе получается триада.

Именно в пузырьках хранится кальций.

Так ПД распространяется внутрь клетки, и происходит электромеханическое сопряжение. Возбуждение проникает в волокно, переходит в продольную систему, высвобождает кальций. Таким образом осуществляется механизм сокращения мышечного волокна.

3 процесса с АТФ

При взаимодействии обеих нитей при наличии ионов кальция немалая роль отводится АТФ. Когда реализуется механизм мышечного сокращения скелетной мышцы, энергия АТФ применяется для:

  • работы насоса натрия и калия, который поддерживает постоянную концентрацию ионов;
  • этих веществ по разные стороны мембраны;
  • скольжения нитей, укорачивающих миофибриллы;
  • работы насоса кальция, действующего для расслабления.

АТФ находится в клеточной мембране, нитях миозина и мембранах ретикулума саркоплазматического. Фермент расщепляется и утилизируется миозином.

Потребление АТФ

Известно, что миозиновые головки взаимодействуют с актином и содержат элементы для расщепления АТФ. Последняя активизируется актином и миозином при наличии ионов магния. Поэтому расщепление фермента происходит при прикреплении миозиновой головки к актину. При этом чем больше поперечных мостиков, тем скорость расщепления будет выше.

Механизм АТФ

После завершения движения молекула АФТ обеспечивает энергией для разделения участвующих в реакции миозина и актина. Миозиновые головки разделяются, АТФ расщепляется до фосфата и АДФ. В конце подсоединяется новая АТФ-молекула, и цикл возобновляется. Таковым является механизм мышечного сокращения и расслабления на молекулярном уровне.

Активность поперечных мостиков будет продолжаться лишь до тех пор, пока происходит гидролиз АТФ. При блокировке фермента мостики не станут снова прикрепляться.

С наступлением смерти организма уровень АТФ в клетках падает, и мостики остаются устойчиво прикрепленными к актиновой нити. Так происходит стадия трупного окоченения.

Ресинтез АТФ

Ресинтез возможно реализовать двумя путями.

Посредством ферментативного переноса от креатинфосфата фосфатной группы на АДФ. Так как запасов в клетке креатинфосфата намного больше АТФ, ресинтез реализуется очень быстро. В то же время посредством окисления пировиноградной и молочной кислот ресинтез будет осуществляться медленно.

АТФ и КФ могут исчезнуть полностью, если ресинтез будет нарушен ядами. Тогда и кальциевый насос прекратит работу, вследствие чего мышца необратимо сократится (то есть настанет контрактура). Таким образом, нарушится механизм мышечного сокращения.

Физиология процесса

Подытоживая вышесказанное, отметим, что сокращение волокна мышцы состоит в укорочении миофибрилл в каждом из саркомеров. Нити миозина (толстые) и актина (тонкие) связаны концами в расслабленном состоянии.

Но они начинают скользящие движения друг навстречу к другу, когда реализуется механизм мышечного сокращения. Физиология (кратко) объясняет процесс, когда под влиянием миозина выделяется необходимая энергия для преобразования АТФ в АДФ.

При этом активность миозина будет реализована лишь при достаточном содержании ионов кальция, накапливающихся в саркоплазматической сети.

Источник: https://FB.ru/article/251118/mehanizm-myishechnyih-sokrascheniy-funktsii-i-svoystva-skeletnyih-myishts

Медицина и здоровье
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: