Миелинизация нервных волокон у детей

Содержание
  1. Миелин и обучение: как настроить мозг на максимальную производительность
  2. Мозг взрослого человека не прекращает развиваться
  3. Почему миелин помогает нервным клеткам работать лучше
  4. Нервное волокно, строение, миелинизация и демиелинизация нервных волокон
  5. Миелинизация
  6. Принципы классификации
  7. Демиенилизация
  8. Демиелинизирующие заболевания
  9. Демиелинизирующие заболевания нервной системы – виды, проявления и терапия
  10. Особенности заболевания
  11. Чем поможет врач Юсуповской больницы
  12. Причины появления патологического процесса
  13. Как остановить демиелинизацию?
  14. Классификация
  15. Механизм зарождения и развития
  16. Симптоматика
  17. Миелинизация в норме
  18. Миелин и МРТ
  19. Терминальные зоны миелинизации
  20. Миелинизация головного мозга у детей
  21. Важная обёртка
  22. Изменчивая обёртка
  23. Особенности нервной системы у детей
  24. Головной мозг ребенка
  25. Спинной мозг ребенка
  26. Миелинизация нервных волокон
  27. Исследование нервной системы у детей

Миелин и обучение: как настроить мозг на максимальную производительность

Миелинизация нервных волокон у детей

Будучи детьми, мы часто слышали от родителей и учителей пословицы «повторение – мать учения», «дело мастера боится» и т.д.

Однако почему, с научной точки зрения, постоянное обучение и практика благоприятно влияют на состояние мозга? Немалую роль в этом играет особое вещество – миелин, которое формирует оболочку аксонов нервных клеток.

Более подробно о процессе миелинизации и обучении Вы узнаете в статье, которую для Вас подготовил estet-portal.com.   

Мозг взрослого человека не прекращает развиваться

Когда мы обучаемся новому навыку, будь то программирование, игра в шахматы, катание на роликах или танцы, мы, сами того не осознавая, меняем наш мозг.

Научные исследования показали, что мозг невероятно пластичен, то есть он не формируется окончательно в 25 лет и не остается неизменным до конца жизни. В то время как определенные вещи (например, язык) детям даются намного легче, чем взрослым, существует масса доказательств того, что нейронная сеть мозга взрослого человека также может трансформироваться.

Но как это происходит? Чтобы выполнить определенное задание, нам необходимо активировать определенные участки мозга.

Человеческий мозг координирует сложный комплекс реакций, включающих моторную функцию, обработку визуальной и звуковой информации, речь и прочее.

Поначалу мы можем сбиваться, забывать некоторые вещи и слова, однако практика помогает нам все лучше справляться с задачей, чувствуя себя при этом более естественно и комфортно.

Постоянное обучение помогает мозгу оптимизировать выполнение комплекса скоординированных действий благодаря процессу миелинизации – образованию слоя миелина вокруг аксонов нервных волокон.

Нейроны – основные строительные кирпичики мозга.

Нейрон состоит из дендритов, получающих сигналы от других нейронов, клеточного тела, которое обрабатывает эти сигналы, и аксона – длинного «кабеля», который соединяется и взаимодействует с дендритами других нейронов.

Когда различные части мозга взаимодействуют и координируют между собой свою активность, они отправляют нервные импульсы – электрические заряды, которые проходят по аксону нейрона и передаются в следующий нейрон цепи.

Когда нейрон «загорается», запускается так называемый эффект домино: данный процесс затрагивает количество нейронов, необходимых для передачи сигнала в конечную точку. Все это происходит невероятно быстро, что позволяет нам молниеносно реагировать на то или иное событие.

Иногда мы называем наш мозг серым веществом, потому что такой цвет ему придают клеточные тела нейронов, однако в нем, как известно, есть и белое вещество, которое составляет примерно 50% мозга.

Так вот, белое вещество – это аксоны, покрытые миелиновой оболочкой, придающей им белый цвет.

Миелин – состоящее преимущественно из жиров (на 75%) и белков вещество, которое покрывает аксоны нервных клеток.

Ученые выяснили, что миелинизация увеличивает скорость передачи и силу нервных импульсов, «заставляя» электрический заряд проскакивать через миелиновую оболочку к следующему открытому участку аксона.

Миелинизация увеличивает скорость передачи и силу нервных импульсов, «заставляя» электрический заряд проскакивать через миелиновую оболочку к следующему открытому участку аксона.

Иными словами, миелин позволяет электрическим сигналам «телепортироваться», вместо прямого следования по аксону, что обеспечивает сверхбыструю передачу нервных импульсов.

Мы выяснили, что миелиновая оболочка – важная составляющая структура мозга, которая обеспечивает более быструю передачу нервных импульсов. Но можно ли как-нибудь «нарастить» миелин вокруг аксонов?

Важно понимать, что процесс миелинизации протекает естественным путем, преимущественно в детстве. Дети – «генераторы миелина», которые впитывают информацию об окружающем мире, словно губки. С возрастом эта способность снижается, однако не исчезает полностью, то есть у взрослых процесс миелинизации также протекает, только медленнее, да и усилий для «наращивания» миелина требуется больше.

Дети – «генераторы миелина», которые впитывают информацию об окружающем мире, словно губки.

Ученые полагают, что два типа глиальных клеток в мозге играют роль в создании нового миелина. Первый тип – астроциты, которые мониторят активность аксонов нервных клеток. Большое количество повторных сигналов от определенного аксона побуждает астроцит к выбросу химических веществ, которые стимулируют второй тип клеток – олигодендроциты – к выработке миелина, обволакивающего аксон.

Потому постоянная практика, будь то написание статей для блога, изучение иностранного языка, оригами, вязание и любые другие осваиваемые навыки, помогает создать новые паттерны передачи электрических сигналов между нейронами. Со временем это запускает процесс миелинизации соответствующих аксонов и увеличивает силу и скорость передачи сигналов.

Почему миелин помогает нервным клеткам работать лучше

Каким же образом миелин улучшает работу мозга? Наверняка можно сказать, что миелин увеличивает силу и скорость передачи нервных импульсов, что помогает нам в обучении. 

Одним из доказательств этого являются снимки головного мозга профессиональных музыкантов. Было проведено большое количество исследований, посвященным различиям между мозгом музыкантов и обычных людей. В одном из них использовалась технология диффузионной МРТ, которая позволяет получить информацию о тканях и волокнах сканируемого участка мозга неинвазивным путем.

Исследователи пришли к выводу, что определенное количество практических занятий в детстве и юности у пианистов ассоциировалось с повышенной плотностью белого вещества в участках мозга, отвечающих за моторные навыки, обработку визуальной и слуховой информации, по сравнению с обычными людьми. При этом также наблюдалась прямая взаимосвязь между количеством часов практики и плотностью белого вещества/миелина.

Постоянное обучение новому – лучший способ стимуляции синтеза миелина.

Еще одним аргументом в пользу пословицы «учиться никогда не поздно» является то, что происходит при отсутствии деятельности, способствующей формированию миелина. Демиелинизация – известный фактор, играющий роль в развитии рассеянного склероза и других нейродегенеративных заболеваний. Потому миелин – важное вещество для поддержания функций мозга и, соответственно, тела.

Источник: https://estet-portal.com/statyi/mielin-i-obuchenie-kak-nastroit-mozg-na-maksimalnuyu-proizvoditelnost

Нервное волокно, строение, миелинизация и демиелинизация нервных волокон

Миелинизация нервных волокон у детей

Нервное волокно – это удлиненный отросток нейронов, покрытый леммоцитами и миелиновой или безмиелиновой оболочкой. Основной  его функцией является проводимость нервных импульсов.

В периферической и центральной нервной системе преобладают мякотные (миелиновые) нервные волокна, которые иннервируют скелетную мускулатуру, безмякотные находятся в симпатическом отделе вегетативной системы и распространяются на внутренние органы.

Волокна, не имеющие оболочки, называются голыми осевыми цилиндрами.

Миелинизация

Нервное волокно имеет в основе отросток нейрона, который образует своеобразную ось. Снаружи он окружен миелиновой оболочкой с биомолекулярной липидной основой, состоящей из большого количества витков мезаксона, который по спирали накручивается на нейроновую ось. Таким образом, происходит миелинизация нервных волокон.

Миелиновые нервные волокна периферической системы сверху дополнительно покрыты вспомогательными Шванновскими клетками, поддерживающими аксон и питающими тело нейрона. Поверхность мякотной мембраны имеет интервалы – перехваты Ранвье, в этих местах осевой цилиндр прикрепляется к наружной Шванновской мембране.

Миелиновый слой не обладает электропроводящими свойствами, их имеют перехваты. Возбуждение происходит в ближайшем к месту воздействия внешнего раздражителя интервале Ранвье. Импульс передается скачкообразно, от одного перехвата к другому, это обеспечивает высокую скорость распространения импульса.

Миелиновые нервные волокна  регулируют обмен веществ в мышечной ткани, обладают высоким сопротивлением по отношению к биоэлектрическому току.

Промежутки Ранвье генерируют и усиливают импульсы. У волокон центральной нервной системы нет Шванновской мембраны, эту функцию выполняют олигодендроглии.

Безмякотные ткани имеют несколько осевых цилиндров, у них нет миелинового слоя и перехватов, сверху покрыты Шванновскими клетками, между ними и цилиндрами образуются щелевидные пространства.

Волокна имеют слабую изоляцию, допускают распространение импульса из одного отростка нейрона в другой, на всем протяжении контактируют с окружающей средой, скорость проведения импульсов гораздо ниже, чем у мякотных волокон, при этом организму требуется большее количество энергии.

Из мякотных и безмякотных отростков нейронов формируются крупные нервные стволы, которые, в свою очередь, разветвляются на более мелкие пучки и заканчиваются нервными окончаниями (рецепторные, двигательные, синапсы).

Нервные окончания – это конец миелиновых и безмиелиновых нервных волокон, который формирует межнейронные контакты, рецепторные и двигательные окончания.

Принципы классификации

Разные типы нервных волокон имеют неодинаковую скорость проведения импульсов возбуждения, это зависит от их диаметра, длительности потенциала действия и степени миелинизации. Существует прямо пропорциональная зависимость между скоростью и диаметром волокна.

Структурно-функциональный метод классификации нервных волокон Эрлангера-Гассера по скорости проведения нервных импульсов:

  • Миелиновое нервное волокно группы А: α, β, Υи δ. Самый большой диаметр и толстую оболочку имеют ткани α – 20 мк, они обладают хорошей скорость проводимости импульсов – 120 м/сек. Эти ткани иннервируют источник возбуждения из столба спинного мозга к скелетным рецепторам мышц, сухожильям, отвечают за тактильные ощущения.

Остальные типы волокон имеют меньший диаметр (12 мк), скорость проведения импульса. Эти ткани передают сигналы от внутренних органов, источников боли в ЦНС.

  • Миелиновые волокна группы В относятся к автономной нервной системе. Общая скорость проведения импульса составляет 14 м/сек, потенциал действия в 2 раза больше, чем у волокон группы А. Миелиновая оболочка слабо выражена.
  • Безмиелиновые волокна группы С имеют очень маленький диаметр (0,5 мк) и скорость возбуждения (6 м/сек). Эти ткани иннервируют симпатическую нервную систему. К данной группе также относятся волокна, которые проводят импульсы от центров боли, холода, тепла и давления.

Отростки нейронов делят на афферентные и эфферентные. Первый тип обеспечивает передачу импульсов от рецепторов тканей в центральную нервную систему. Второй тип передает возбуждение от ЦНС к рецепторам тканей.

Функциональная классификация нервных волокон афферентного типа по Ллойду-Ханту:

Демиенилизация

Процесс демиелинизации нервных волокон – это патологическое повреждение миелиновой оболочки, которое вызывает нарушение функционирования тканей. Вызывают патологию воспалительные процессы, метаболические нарушения, нейроинфекция, интоксикация или ишемия тканей. Миелин замещается фиброзными бляшками, в результате нарушается проведение импульсов.

Первый тип демиелинизации – это миелинопатия, вызванная аутоиммунными реакциями организма, болезнью Канавана, синдромом Гийена-Барре, амиотрофией Шарко-Мари-Тута.

Второй тип – это миелинокластия. Патология характеризуется наследственной предрасположенностью к разрушению миелиновой оболочки (болезнь Бинсвангера).

Демиелинизирующие заболевания

Заболевания, приводящие к разрушению миелиновой оболочки, чаще всего имеют аутоиммунную природу, другой причиной может быть лечение нейролептиками или наследственная предрасположенность. Разрушение липидного слоя вызывает снижение скорости проведения импульсов раздражения.

Заболевания разделяют на те, которые затрагивают центральную нервную систему и патологии, повреждающие периферическую сеть. Болезни, которые влияют на работу ЦНС:

  • Миелопатия спинного мозга возникает в результате сдавливания миелиновых волокон межпозвоночными грыжами, опухолями, костными осколками, после инсульта спинного мозга. У больных снижается чувствительность, мышечная сила в области поражения, возникают парезы рук или ног, нарушается работа кишечника, мочевыводящей системы, развивается атрофия мышц нижних конечностей.
  • Лейкодистрофия головного мозга вызывает поражение белого вещества. У пациентов нарушена координация движений, они не могут держать равновесие. Развивается мышечная слабость, появляются непроизвольные судороги, нервный тик. Постепенно ухудшается память, интеллектуальные способности, зрение и слух. На поздних стадиях возникает слепота, глухота, полный паралич, трудности во время проглатывания пищи.
  • Мелкоочаговая лейкоэнцефалопатия головного мозга чаще всего поражает мужчин старше 60 лет. Основными причинами является артериальная гипертензия и наследственная предрасположенность. У пациентов ухудшается память и внимание, появляется заторможенность, трудности с речью. Замедляется походка, нарушается координация движений, появляется недержание мочи, больному тяжело глотать пищу.
  • Синдром осмотической демиелинизации характеризуется распадом миелиновых оболочек в тканях головного мозга. У больных отмечается расстройство речевого аппарата, постоянное чувство сонливости, депрессии или повышенная возбудимость, мутизм, парез всех конечностей. На ранних стадиях заболевания процесс демиелинизации обратим.
  • Рассеянный склероз проявляется онемением одной или двух конечностей, частичная или полная потеря зрения, боль при движении глаз, головокружение, быстрая утомляемость, тремор конечностей, нарушение координации движений, покалывание в различных частях тела.
  • Болезнь Девика – это воспалительный аутоиммунный недуг, который поражает зрительный нерв и ствол спинного мозга. К симптомам относится различная степень нарушения зрения, вплоть до слепоты, парапарезы, тетрапарезы, нарушение функционирования органов малого таза.

Симптомы заболеваний зависят от области поражения миелиновых волокон. Выявить процесс демиелинизации можно с помощью компьютерной томографии, магниторезонансной терапии. Признаки поражения периферической нервной системы обнаруживаются на электромиографии.

Источник: http://NashiNervy.ru/o-nervnoj-sisteme/stroenie-nervnogo-volokna.html

Демиелинизирующие заболевания нервной системы – виды, проявления и терапия

Миелинизация нервных волокон у детей

Из-за разрушения миелинового слоя снижается проводимость нервного импульса и у больных появляются целые комплексы симптомов. Чтобы лучше понимать важность изоляционной оболочки можно представить, что нерв — это кабель, состоящий из множества мелких проводков, по которым идет электрический ток.

Если повреждается изоляция, то электричество поступает не в полной мере к месту назначения. У человека это проявляется в виде множества неврологических симптомов. Понять характер их проявления можно ориентируясь на локализацию очага повреждения. Ведь в основном демиелинизирующие заболевания центральной нервной системы (ЦНС) поражают определенные участки нервных волокон.

Распространения болезни по белому веществу головного мозга называется диссеминацией. Такой термин придумал Жан-Мартен Шарко во время своих попыток разгадать механизм развития демиелинизации. Именно поэтому у рассеянного склероза есть и другое название, а именно диссеминированный склероз.

Особенности заболевания

Демиелинизирующее заболевание головного мозга снижает проводимость нервного импульса и у больных появляются целые комплексы симптомов. Чтобы лучше понимать важность изоляционной оболочки можно представить, что нерв — это кабель, состоящий из множества мелких проводков, по которым идет электрический ток.

Если повреждается изоляция, то электричество поступает не в полной мере к месту назначения. У человека это проявляется в виде множества неврологических симптомов. Понять характер их проявления можно ориентируясь на локализацию очага повреждения.

Ведь в основном демиелинизирующие заболевания центральной нервной системы (ЦНС) поражают определенные участки нервных волокон.

Распространения болезни по белому веществу головного мозга называется диссеминацией. Такой термин придумал Жан-Мартен Шарко во время своих попыток разгадать механизм развития демиелинизации. Именно поэтому у рассеянного склероза есть и другое название, а именно диссеминированный склероз.

Чем поможет врач Юсуповской больницы

В отделении неврологии Юсуповской больнице работают высококвалифицированные врачи, которые специализируются на лечении демиелинизирующих заболеваний.

Врачи постоянно обмениваются знаниями со специалистами других клиник как внутри страны, так и за рубежом.

Они посещают конференции на которых знакомятся с современными методиками лечения рассеянного склероза и других заболеваний демиелинизирующей группы.

Специалисты Юсуповской больницы проведут диагностику демиелинизирующего заболевания спинного мозга, головного мозга, назначат эффективное медикаментозное лечение. В больнице можно пройти курс массажа, заниматься лечебной гимнастикой со специалистом. С пациентом и его родственниками работают психологи больницы.

Причины появления патологического процесса

На сегодняшний день нельзя со 100% уверенностью назвать причины появления и развития болезней, связанных с разрушением миелиновой оболочки. Наиболее распространенной болезнью из этой группы является рассеянный склероз. Повлиять на его развитие могут такие факторы:

  • Сбои в иммунной системе;
  • Перенесенные инфекционные болезни;
  • Экология;
  • Географическое расположение;
  • Наследственная предрасположенность

Такие причины свойственны и другим болезням из этой группы, но именно РС чаще всего заболевают люди, которые находятся в северной широте.

По статистике, меньше всего страдают от патологии жители экваториальных стран и южной половины планеты.

В редких случаях вызвать демиелинизирующее заболевание ЦНС могут такие факторы:

  • Длительные эмоциональные перегрузки;
  • Курение;
  • Вакцина от гепатита вирусной природы.

Изредка РС наблюдается у пожилых людей вследствие возрастных изменений. Врачи диагностировали и аутоиммунные патологии, при которых повреждение миелина было вторичным появлением, например, при болезни Девика.

Из более подтвержденных версий можно выделить перенесенную инфекцию, например, кишечную или респираторную. К этой же причине относится серьезное повреждение всех отделов нервной системы свойственное энцефаломиелополирадикулоневриту, а также синдрому Гийене-Барре.

Зачастую последняя патология имеет течение схожие с параличом Ландри. По статистике значительно чаще страдают от этих недугов любители спиртных напитков.

Иногда повреждаются миелиновые оболочки на позднем этапе развития сифилиса из-за спинной сухотки и развивающегося паралича.

Бывают ситуации, когда причин демиелинизации так и не удается найти. К таким патологическим процессам относится концентрический склероз Бало. Именно поэтому диагностировать демиелинизирующие патологии по анамнезу (сведеньям полученным путем опроса) крайне сложно. В такой ситуации остается ориентироваться на признаки патологии и инструментальные методы обследования.

Как остановить демиелинизацию?

Полноценно остановить процесс демиелинизации практически нет возможности, но можно заранее предупредить прогрессирование заболевания.

Диагностирование и терапия таких патологических состояний, на сегодняшний день, является сложным и практически неизученным процессом. Однако большой прогресс произошел при исследованиях в области иммунологии, биологии и молекулярной генетики, которые проводились достаточно длительное время.

Огромные усилия ученых позволили изучить основные механизмы прогрессирование демиелинизирующие заболевания и факторов, провоцирующих её старт.

Благодаря этому были изобретены новые методы лечения.
Основным способом диагностирования заболевания стало исследование организма на МРТ, которое помогает выявить очаги демиелинизации еще на стартовых стадиях развития.

Классификация

Для постановки диагноза и назначения лечения врачи обычно ориентируются на международную классификацию болезней (МКБ).

В настоящий момент был выпущен 10 пересмотр и подробней всего в нем описан именно рассеянный склероз, которому был дан код G35.

Другие патологические процессы, связанные с демиелинизацией помещены в отдельную подгруппу. Ведь встречаются они значительно реже и о таких болезнях меньше информации.

На сегодняшний день была классифицирована такая информация о РС, как:

  • Сходные группы симптомов;
  • Локализация повреждений;
  • Степень тяжести;
  • Течение болезни.

Отдельное внимание заслуживает оценка степени инвалидности EDSS (Expanded Disability Status Scale). В нее входят все аспекты жизни человека, страдающего от РС. Ставится она, основываясь на таких моментах:

  • Координация движений;
  • Тазовые расстройства;
  • Степень самообслуживания;
  • Удержание равновесия;
  • Походка;
  • Степень прогрессирования паралича.

Работать с этой шкалой не так просто и только после экзамена врача подпускают к такому оцениванию.

Механизм зарождения и развития

Постепенное уничтожение миелиновой оболочки является главным признаком всех демиелинизирующих патологий. Постепенно симптоматика будет усугубляться и зависеть от очага повреждения. Такой патологический процесс имеет свои звенья, которые привели к его развитию и механизм зарождения, на примере РС, у него следующий:

  • Развивается патология вследствие возникновения фактора способного повредить механизм иммунной защиты;
  • Возникший аутоиммунный сбой провоцирует базовый распад внешний оболочки аксонов;
  • Постепенно уничтожается гематоэнцефалический барьер и в кровь больного попадают мозговые антигены;
  • Далее, вследствие иммунной реакции на попадание в кровь антигенов, лимфоциты мигрируют в головной мозг и вырабатывают антитела, уничтожающие миелин;
  • В итоге образуются очаги повреждения в белом веществе, которые напоминают по внешнему виду бляшки.

Локализуются повреждения в зависимости от типа заболевания. При РС очаги повреждения располагаются преимущественно перивентрикулярно (вокруг боковых желудочков), а при недуге Бинсвангера бляшки обнаруживаются еще и в таламусе и хвостатом теле.

Демиелинизирующие болезни обычно протекают в хронической форме и в период ремиссии может наблюдаться небольшая ремиелинизация. Такой процесс обозначает начало восстановления миелиновой оболочки. Скорость ремиелинизации обычно значительно меньше демиелинизации, а при длительном течении патологии она и вовсе останавливается.

Симптоматика

Симптомы зависят от разновидности заболевания и от того, где находятся очаги демиелинизации головного мозга.

В частности, рассеянный склероз характеризуется следующим набором признаков:

  1. Изменение соотношения интенсивности сухожильных и некоторых кожных рефлексов, парезы, мышечные спазмы.
  2. Изменение характеристик зрения (искажение поля, четкости, контраста, появление скотом).
  3. Изменения степени чувствительности различных анализаторов.
  4. Признаки нарушения функционирования мозгового ствола и нервов, анатомически связанных с головным мозгом (бульбарный синдром, дисфункция мимических мускулов, нистагм).
  5. Дисфункция органов таза (импотенция, запоры, недержание мочи).
  6. Изменения нейропсихологического характера (снижение интеллекта, депрессивные состояния, эйфории).

Болезнь Марбурга (рассеянный энцефаломиелит) представляет собой скоротечное смертельно опасное заболевание, которое способно погубить человека за несколько месяцев. Существует классификация, по которой данный недуг относят к форме рассеянного склероза. Он напоминает инфекционное заболевание, при котором проявляются такие симптомы:

  1. Быстроразвивающаяся демиелинизирующая патология затрагивает ствол мозга и нервы, с ним связанные.
  2. Повышается внутричерепное давление.
  3. Нарушается двигательная функция и чувствительность.
  4. Часто возникает головная боль, сопровождающаяся рвотой.
  5. Появляются судороги.

Болезнью Девика называют такой процесс демиелинизации, который охватывает преимущественно зрительные нервы, а также вещество спинного мозга. Заболевание считается более опасным для взрослых и менее опасным для детей, особенно если вовремя начать лечение гормональными медикаментами. Проявления этой патологии таковы:

  1. Проблемы со зрением, влекущие за собой полную слепоту.
  2. Параличи.
  3. Дисфункция органов таза.

Другая патология, прогрессирующая мультифокальная лейкоэнцефалопатия, характеризуется сочетанием иммунных сдвигов, вызванных внешними факторами, и появлением демиелинизированных очагов. Заподозрить такой недуг можно по следующим признакам:

Источник: https://rptp-rd.ru/rasstrojstva/demieliniziruyushchee-zabolevanie-golovnogo.html

Миелинизация в норме

Миелинизация нервных волокон у детей

Функция и структура миелина

Перед обсуждением процессов нормальной миелинизации в головном мозге человека необходимо понимать строение миелина и его функции в центральной нервной системе. Миелин имеется и в центральной, и в периферической нервных системах.

В ЦНС он находится преимущественно в белом веществе (хотя некоторые его количества имеются и в сером), как раз придавая ему такой цвет.

Миелин работает по типу электрического изолятора: скорость проведения потенциала действия возрастает в 10-100 раз по сравнению с немиелинизированными волокнами.

Edgar и Garbern (2004) показали, что отсутствие главного белка миелина (PLP/DM20) в олигодендроцитах приводит к серьезным нарушениям аксонального транспорта у мышей с моделью наследственной спастической параплегией. Также было выяснено, что миелин, вероятно, играет роль в регуляции как состава ионов, так и объема жидкости вокруг аксона.

Миелинизация – процесс образования билипидного миелинового слоя вокруг аксона. Данный процесс обеспечивает в дальнейшем быструю передачу информации, необходимую для когнитивной, поведенческой, эмоциональной функций. Миелинизация начинается во время эмбрионального периода и продолжается после рождения.

Миелин является модифицированным расширением отростков олигодендроглиальных клеток. Олигодендроцит является ключевой клеткой в миелинизации ЦНС и является преобладающим типом нейроглии в белом веществе.

Миелиновая оболочка состоит из множественных сегментов миелина, которые обвиваются вокруг аксона.

Данная оболочка способна проводить потенциал действия с его увеличением по аксону благодаря перехватам Ранвье, которые представляют собой немиелинизированные участки, содержащие натриевые ионные каналы – они и ответственны за ускорение проведения ПД по аксону.

Миелин также находится в некотором симбиозе с аксоном. Миелин участвует в метаболических превращениях своих компонентов и содержит большое количество миелиновых ферментов. Миелин также играет роль в переносе ионов, что способствует буферизации ионов вокруг аксона.

Один олигодендроцит может обеспечивать миелиновой оболочкой до 40 волокон. Миелин примерно на 70% состоит из липидного компонента и на 30% – из белкового. Основной белок миелина (MBP) составляет 30% от всей белковой фракции, протеолипидный белок (PLP) – 50%, а фосфодиэстеразы циклических нуклеотидов – 4%. Липиды миелина в своем составе содержат холестерол, фосфолипиды, гликосфинголипиды.

Миелин и МРТ

Не существует такой техники, которая могла бы визуализировать напрямую миелиновый бислой. Миелин оценивается качественно на основании Т1- и Т2-ВИ, МР-спектроскопии, диффузно-тензорной визуализации и переноса намагниченности. В клинической практике традиционная анатомическая визуализация является основой из-за своей легкости выполнения.

Квантификация миелина может быть выполнена с использованием MCR-анализа (multicomponent relaxation). MCR-анализ – это объемно-взвешенное суммирование микроскопических компартментов воды.

С помощью этого метода определяются два домена воды: медленно-релаксирующий домен, включающий свободную внутри- и внеклеточную воду, и быстро-релаксирующий домен, включающий в себя воду, заключенную в липидном бислое миелина.

На данный момент стандартные МРТ-техники не способны специфично подсчитывать количество миелина. Они позволяют оценить изменения в плотности и размерах аксонов, изменения в мембранной структуре, а именно содержание белков, липидов и воды. DTI – ненадежный показатель общего количества миелина, но все же дает информацию о его возможных изменениях.

Barkovich выделяет 2 отдельные популяции молекул воды, которые играют главную роль в формировании сигнала от миелина на МРТ – это те молекулы, которые находятся в миелиновой оболочке, и молекулы, находящиеся вне ее.

На анатомических изображениях миелин имеет гиперинтенсивный сигнал по отношению к серому веществу на Т1- и гипоинтенсивный на Т2-ВИ.

На Т1-ВИ гиперинтенсивность относительно коры определяется вероятнее всего наличием большого количества гликолипидов (особенно галактоцереброзидов) и холестерола в миелиновой оболочке. На Т2-ВИ гипоинтенсивность обусловлена уменьшенным содержанием воды.

Нормальная миелинизация

Главное правило миелинизации по Barkovich – ее начало на 5 месяце эмбрионального периода и продолжение в течение всей жизни. Миелинизация начинается с черепных нервов, что имеет смысл, поскольку чувствительность необходима для выживания.

Второе правило – миелинизация структур происходит в направлении снизу вверх, от задних структур к передним и от центра к периферии. Логично, что ствол мозга и мозжечок миелинизируются раньше полушарий, а базальные ядра и таламус – раньше белого вещества.

Кроме того, задняя ножка внутренней капсулы миелинизируется раньше передней, валик мозолистого тела раньше колена, а центральные участки лучистого венца – раньше субкортикальных регионов.

Counsell et al.

описали миелинизацию у сильно недоношенных новорожденных и подтвердили миелинизацию червя мозжечка, вестибулярных ядер, ножек мозжечка, зубчатых ядер, медиального продольного пучка, медиальных коленчатых тел, субталамических ядер, нижних ядер оливы, вентролатеральных ядер таламуса, медиальной и латеральной петель, нижних холмов четверохолмия, а также клиновидного и тонкого пучков. Исследователи не обнаружили никаких новых сайтов миелинизации между 28 и 36 неделями, после чего снова появились новые миелиновые участки в задней ножке внутренней капсулы, лучистом венце и кортикоспинальных трактах предцентральной и постцентральной извилины.

Гистологические исследования демонстрируют миелинизацию при рождении в стволе мозга, белом веществе мозжечка и задней ножке внутренней капсулы с распространением на таламус и базальные ганглии.

Bird et al. проанализировали 60 пациентов и обнаружили значительные различия в скорости и начале появления изменений, связанных с миелинизацией. Исследователи изучали сайты-маркеры для определенных возрастов при определении нормального миелина.

Так, при рождении наблюдалась миелинизация задней ножки внутренней капсулы, ножек мозжечка и лучистого венца вокруг центральной борозды.

Исследователи снова последовательно подтвердили сроки миелинизации: в задней ножке раньше передней, валик мозолистого тела раньше колена, а центральные участки лучистого венца – раньше субкортикальных регионов у всех субъектов.

Paus et al. (2001) описали 3 паттерна развития, наблюдаемые в отношении дифференциации серого-белого вещества в первые 12-24 месяца жизни.

– младенческий паттерн – менее чем за 6 месяцев; картина, противоположная картине взрослого мозга,– изометрический паттерн (8-12 месяцев), в котором наблюдается плохая дифференциация между серым и белым веществом

– ранний взрослый паттерн (более 12 месяцев), в которых сигнал от серого вещества выше, чем от белого, на Т2-ВИ и ниже на Т1-ВИ.

Валик мозолистого тела миелинизируется примерно к 3 месяцу, тело – к 4-5 месяцу, а колено – к 6 месяцу. На протяжении развития (в первый год) наблюдаются изменения и в форме, и в толщине.

У новорожденного утолщение начинается с колена (со 2-3 месяца), затем утолщается валик (с 5-6 месяца), достигая толщины колена к 7 месяцу. Мозолистое тело увеличивается до 12 месяца.

На Т1-ВИ валик мозолистого тела имеет повышенную интенсивность сигнала в 4 месяца, когда как колено – в 5-6 месяцев.

Терминальные зоны миелинизации

Последней зоной миелинизации на МРТ является перитригональная зона. Эта область поддерживает постоянную гиперинтенсивность на T2-ВИ, но не интенсивнее серого вещества. Parazzini et al.

описали терминальные зоны миелинизации в лобно-теменных субкортикальных регионах.

Было показано, что данная область характеризуется гиперинтенсивным сигналом на Т2-ВИ в течение первых 36-40 месяцев жизни.

МРТ-картина миелинизации в разные возрастные промежутки (до 2 лет) — обзорная таблица

https://kazakovmd.ru/myelinisierung_ist_normal/

Источник: https://zen.yandex.ru/media/id/5c059de3c383c403df2e5df9/mielinizaciia-v-norme-5d5136fd78125e00add82ff3

Миелинизация головного мозга у детей

Миелинизация нервных волокон у детей

  • 1 Сложная обёртка
  • 2 Важная обёртка
  • 3 Изменчивая обёртка

Миелин окружает отростки нервных клеток, изолируя их от внешнего воздействия. Это необходимо для более надежной и быстрой передачи сигнала по нервной системе.

Благодаря изоляции нервного волокна электрический сигнал не рассеивается и добирается до места назначения без помех.

Скорость прохождения сигнала по миелиновым и безмиелиновым волокнам может отличаться на три порядка: от 70 до 140 м/с и от 0,3 до 0,5 м/с соответственно.

По сути миелин — это клеточная мембрана глиальных клеток, многократно обмотанная вокруг аксона. Сама мембрана на 70–75% состоит из липидов и на 25–30% — из белков.

В периферической нервной системе донором мембран становятся шванновские клетки, а в центральной — олигодендроциты.

Эти клетки бережно обматывают своими мембранами ценные каналы связи, чтобы обеспечить надежное взаимодействие нервной системы и периферических органов.

https://www..com/watch?v=ytdev

Миелин покрывает нервное волокно не целиком: существуют промежутки между наслоениями миелина, называемые перехватами Ранвье (рис. 1). Есть прямая зависимость между расстоянием от одного промежутка до другого и скоростью распространения нервного импульса по волокну: чем больше расстояние между перехватами Ранвье, тем выше скорость передачи сигнала в нерве[1].

Важная обёртка

Миелинизация (постепенная изоляция нервных волокон миелином) начинается у людей уже в эмбриональном периоде развития. Первыми этот путь проходят подкорковые структуры. В течение первого года жизни происходит миелинизация отделов периферической и центральной нервной системы, отвечающих за двигательную активность.

Миелинизация участков головного мозга, регулирующих высшую нервную деятельность, заканчивается к 12–13 годам. Из этого видно, что миелинизация тесно связана со способностью отделов нервной системы осуществлять специфические для них функции. Вероятно, именно активная работа волокон до рождения запускает их миелинизацию.

Дифференцировка клеток — предшественниц олигодендроцитов зависит от ряда факторов, связанных с работой нейронов. В частности, работающие отростки нейронов могут выделять белок нейролигин 3, который способствует пролиферации и дифференциации клеток-предшественниц [4]. В дальнейшем созревание олигодендроцитов происходит за счет ряда других факторов.

В статье с характерным названием «Насколько велик миелинизирующий оркестр?» описывается происхождение олигодендроцитов в разных частях мозга [5]. Во-первых, в различных частях мозга олигодендроциты начинают созревать в разное время. Во-вторых, за их созревание отвечают разные клеточные факторы, что тоже зависит от региона нервной системы (рис. 3).

У нас может возникнуть вопрос: а сходны ли между собой олигодендроциты, появившиеся с таким расхождением в стартовых данных? И насколько схож у них миелин? В целом, авторы статьи считают, что между популяциями олигодендроцитов из разных участков головного мозга действительно существуют различия, и обусловлены они во многом именно местом закладки клеток, воздействием на них окружающих нейронов. И всё же типы миелина, синтезируемые разными пулами олигодендроцитов, не имеют настолько больших отличий, чтобы они не были взаимозаменяемыми.

Рисунок 3. Различия во времени закладки олигодендроцитов в разных отделах головного мозга и в клеточных факторах, влияющих на их развитие.

[5]

в некоторых участках ЦНС их число доходит до 50. Мембраны олигодендроцитов становятся всё более тонкими, распространяясь по поверхности аксона и «выдавливая» из себя цитоплазму. Чем раньше слой миелина был обернут вокруг нервного окончания, тем более тонким он будет. Самый внутренний слой мембраны остается довольно толстым — для осуществления метаболической функции.

Рисунок 4. Миелинизация нервного волокна. Мембрана олигодендроцита наматывается на аксон, постепенно уплотняясь с каждым оборотом. Внутренний, прилегающий к аксону слой мембраны остается относительно толстым, что необходимо для выполнения метаболической функции.

На разных частях рисунка (а-в) с разных ракурсов показано постепенное наматывание новых слоев миелина на аксон. Красным цветом выделен более толстый, метаболически активный слой, синим — новые уплотняющиеся слои.

Внутренний слой миелина (inner tongue на части б) охватывается всё новыми и новыми слоями мембраны не только сверху, но и по бокам (в), вдоль аксона.

[6]

Миелинизация нервных волокон олигодендроцитами также значимо зависит от белка нейрегулина 1. Если он не воздействует на олигодендроциты, то в них запускается программа миелинизации, не учитывающая активность нервной клетки.

Если же олигодендроциты получили сигнал от нейрегулина 1, то далее они начнут ориентироваться на работу аксона, и миелинизация будет зависеть от интенсивности выработки глутамата и активации им специфических NMDA-рецепторов на поверхности олигодендроцитов [6].

Нейрегулин 1 — ключевой фактор для запуска процессов миелинизации и в случае шванновских клеток [7].

Изменчивая обёртка

усложнил процедуру развода, запретил аборты и ввел ряд стимулов и льгот для женщин, имевших более пяти детей. Итогом этих мер стало ожидаемое повышение рождаемости. Вместе с рождаемостью увеличилось количество криминальных абортов, не добавивших здоровья румынкам, и возросло количество детей-отказников.

Последние воспитывались в детских домах, где с ними не очень-то активно общался персонал.

Румынские дети в полной мере ощутили на себе то, что называется социальной депривацией — лишение возможности полноценного общения с другими людьми.

Если речь идет о маленьком ребенке, то следствиями социальной депривации станут нарушение формирования эмоциональных привязанностей и расстройство внимания.

Кроме различий при выполнении нейропсихологических тестов, у детей Чаушеску по сравнению с детьми, не находившимися в таких условиях, отличалось даже строение головного мозга [8]. При оценке состояния белого вещества мозга ученые используют показатель фрактальной анизотропии. Он позволяет оценить плотность нервных волокон, диаметр аксонов и их миелинизацию.

Чем больше фрактальная анизотропия, тем разнообразнее волокна, которые встречаются в этой области мозга. У детей Чаушеску отмечалось снижение фрактальной анизотропии в пучке белого вещества, соединяющего височную и лобную доли в левом полушарии, то есть связи в этом регионе были недостаточно сложными и разнообразными, с нарушениями миелинизации.

Такое состояние связей мешает нормальному проведению сигналов между височной и лобной долями.

В височной доле находятся центры эмоционального реагирования (миндалина, гиппокамп), а орбитофронтальная кора лобной доли также связана с эмоциями и принятием решений.

Нарушение формирования связей между этими отделами мозга и проблемы в их работе в итоге приводили к тому, что выросшие в детдомах дети испытывали трудности в установлении нормальных отношений с другими людьми.

На миелинизацию также может влиять и состав еды, которую дают ребенку. При белково-энергетической недостаточности питания отмечается снижение образования миелина. Недостаток жирных кислот тоже отрицательно сказывается на синтезе этого ценного вещества, так как оно больше чем на 2/3 состоит из липидов.

Дефицит железа, йода и витаминов группы В приводит к снижению образования миелина [9]. В основном эти данные были получены при изучении лабораторных животных, но история, к сожалению, дала людям возможность оценить влияние недостатка еды и на формирующийся мозг ребенка [10]. Голодная зима (голл. hongerwinter) 1944–1945 гг.

https://www..com/watch?v=ytcreators

в Нидерландах привела к тому, что родилось множество детей, чьи матери плохо питались. Оказалось, что в условиях голодания мозг этих детей формировался с нарушениями. В частности, наблюдалось большое количество нарушений именно в белом веществе, то есть возникали проблемы с формированием миелина. В итоге это приводило к разнообразным психическим расстройствам.

Источник: https://zdorov4ik.ru/mielinizatsiya-golovnogo-mozga-detey/

Особенности нервной системы у детей

Миелинизация нервных волокон у детей

Анатомо-физиологические особенности нервной системы у детей

Головной мозг ребенка

Развитие головного мозга ребенка

У новорождённых относительная величина головного мозга больше, чем у взрослых: его масса составляет около 1/8 массы тела (в среднем 400 г), в то время как у взрослых – 1/40 массы тела.

Крупные извилины и борозды уже хорошо выражены, хотя и имеют меньшую глубину и высоту. Мелких борозд и извилин (третичных) мало, они постепенно формируются в течение первых лет жизни. Клетки серого вещества, проводящие системы (пирамидный путь и др.) полностью не сформированы, дендриты короткие, малоразветвлённые.

По мере развития борозд и извилин (увеличивается их количество, изменяется форма и топография) происходит и становление миело и цитоархитектоники разных отделов головного мозга. Особенно интенсивно этот процесс происходит в первые 6 лет жизни. Анатомически мозговые структуры созревают до уровня взрослых лишь к 20 годам.

Считают, что количество нервных клеток больших полушарий после рождения не увеличивается, а идут лишь их дифференцировка и увеличение размеров и объёма. Созревание клеток продолговатого мозга заканчивается в основном к 7 годам. Позднее всего, в период полового созревания, заканчивается дифференцировка клеточных элементов серого вещества гипоталамической области.

Подкорковые образования двигательного анализатора, интегрирующие деятельность экстрапирамидной системы, формируются уже к рождению. Однако движения новорождённого хаотичны, не целенаправленны, имеют атетозоподобный характер, преобладает тонус мышц сгибателей. Этот уровень организации движений называют пирамидностриарным.

Мозжечок и неостриатум ещё недостаточно развиты. Координация движений начинает постепенно развиваться уже после рождения. Вначале это касается глазных мышц, что проявляется у ребёнка на 2-3й неделе жизни фиксацией взора на ярком предмете.

Затем ребёнок начинает следить за движущейся игрушкой, поворачивая голову, что свидетельствует о начальной координации движений шейных мышц.

Твёрдая мозговая оболочка у новорождённых относительно тонкая, сращена с костями основания черепа на значительном протяжении. Мягкая, богатая сосудами и клетками, и паутинная оболочки мозга очень тонкие. Субарахноидальное пространство, образованное этими листками, имеет незначительный объём.

Спинной мозг ребенка

Особенности спинного мозга у детей

Спинной мозг у новорождённых по сравнению с головным морфологически представляет собой более зрелое образование. Это определяет его более совершенные функции и наличие спинальных автоматизмов к моменту рождения.

К 2-3 годам заканчивается миелинизация спинного мозга и корешков спинного мозга, образующих “конский хвост”. Спинной мозг растёт в длину медленнее позвоночника. У новорождённого он оканчивается на уровне Lm, в то время как у взрослого – у верхнего края L”.

Окончательное соотношение спинного мозга и позвоночника устанавливается к 5-6 годам.

Миелинизация нервных волокон

Процесс миелинизации нервных волокон

Важный показатель созревания нервных структур – миелинизация нервных волокон. Она развивается в центробежном направлении от клетки к периферии. Фило и онтогенетически более старые системы миелинизируются раньше.

Так, миелинизация в спинном мозге начинается на 4-м месяце внутриутробного развития, и у новорождённого она практически заканчивается. При этом вначале миелинизируются двигательные волокна, а затем – чувствительные. В разных отделах нервной системы миелинизация происходит неодновременно.

Сначала миелинизируются волокна, осуществляющие жизненно важные функции (сосания, глотания, дыхания и т.д.). Черепные нервы миелинизируются более активно в течение первых 3-4 мес жизни. Их миелинизация завершается приблизительно к году жизни, за исключением блуждающего нерва.

Аксоны пирамидного пути покрываются миелином в основном к 5-6 мес жизни, окончательно – к 4 годам, что приводит к постепенному увеличению объёма движений и их точности.

Развитие условно-рефлекторной деятельности у детей

Один из основных критериев нормального развития мозга новорождённого – состояние основных безусловных рефлексов, так как на их базе формируются условные рефлексы. Кора головного мозга даже у новорождённого подготовлена для формирования условных рефлексов. Вначале они формируются медленно.

На 23-й неделе жизни вырабатывается условный вестибулярный рефлекс на положение для кормления грудью и покачивание в люльке. Затем идёт быстрое накопление условных рефлексов, образующихся со всех анализаторов и подкрепляющихся пищевой доминантой.

Условный рефлекс на звуковой раздражитель в виде защитного (мигательного) движения век образуется к концу 1го месяца жизни, а пищевой рефлекс на звуковой раздражитель – на 2м. В это же время формируется и условный рефлекс на свет.

В целом уже на самых ранних этапах развития созревание нервной системы осуществляется по принципу системогенеза с формированием в первую очередь отделов, обеспечивающих жизненно необходимые реакции, отвечающие за первичную адаптацию ребёнка после рождения (пищевые, дыхательные, выделительные, защитные).

Исследование нервной системы у детей

Методика исследования нервной системы у детей

При оценке развития и состояния нервной системы учитывают жалобы, результаты расспроса матери, а в старшем возрасте – и ребёнка. Обращают внимание также на крик, двигательную активность, мышечный тонус, безусловные рефлексы, патологические неврологические знаки, психомоторное развитие.

Медицинский осмотр ребенка

При осмотре новорождённого обращают внимание на стигмы дизэмбриогенеза (малые аномалии развития), окружность и форму головы, состояние черепных швов и родничков, наличие кефалогематом, родовой опухоли, кровоизлияний в склеры глаз. У более старших детей оценивают поведение и реакцию на окружающее (безразличие, сонливость, апатия, страх, возбуждение, эйфория), а также настроение, выражение лица, мимику, жесты и т.д.

Крик новорождённого ребенка

Начало осмотра нередко сопровождается громким криком. Длительность крика здорового ребёнка адекватна действию раздражителя (голод, тактильные или болевые воздействия, мокрые пелёнки и др.). Вскоре после устранения дискомфорта крик прекращается.

Нервная система и нервнопсихическое развитие

Нервная система у детей участвует во взаимодействии организма с окружающей средой, регулирует все его внутренние процессы и их постоянство [температуру тела, биохимические реакции, артериальное давление (АД), питание тканей, обеспечение их кислородом и т.д.], т.е. гомеостаз.

Источник: https://www.medmoon.ru/rebenok/d_bol18.html

Медицина и здоровье
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: