Микроэлемент участвующий в кроветворении

Макро- микроэлементы: в чем разница и почему необходимы и те, и другие?

Микроэлемент участвующий в кроветворении

О витаминах и их роли для здоровья знают даже дети. Но не все могут объяснить, для чего нам нужны минералы, чем отличаются макро – и микроэлементы и какую роль для здоровья они несут. А между тем дефицит минералов грозит серьезными проблемами со здоровьем.

Минералы и их роль для человека

Минералы представляют собой неорганические вещества, которые содержатся в воде и почве, а также входят в состав всех жидкостей и тканей живых организмов, включая человека.

Процент их содержания всего 4-5%, но роль огромна. Минеральные вещества регулируют более 50 тысяч (!) биохимических процессов в нашем теле. Это основа для нормальной работы костной и мышечной систем, сердечно-сосудистой, иммунной, гормональной, нервной системы, для процессов кроветворения, обмена веществ, пищеварения и выведения. Минералы в нашем организме:

  • основной строительный материал скелета и зубов;
  • регуляторы водно-солевого баланса;
  • наши энерго- приемники и распределители;
  • основа нормальной регенерации тканей, передачи нервных импульсов, проницаемости мембран клеток, выработки ферментов.

Тело взрослого человека содержит порядка 3 кг минеральных солей, из них порядка 2,5 кг приходится на костную ткань.

Минералы в нашем организме распределяются между тканями и органами неравномерно. Большинство депонируется в печени, костной и мышечной тканях, но есть и исключения.

  • кальций и фосфор концентрируются в твердых тканях зубов.
  • цинк собирается в поджелудочной железе,
  • йод — в щитовидной,
  • фтор в эмали зубов,
  • алюминий, мышьяк, ванадий накапливаются в волосах и ногтях,
  • кадмий, ртуть и молибден — в почках,
  • олово концентрируется в тканях кишечника,
  • стронций — в пигментной сетчатке глаза,
  • бром, марганец, хром концентрируются в гипофизе.

Организм стремится поддерживать гомеостаз, и при нормальном минеральном обмене человек не будет испытывать дефицита в макро- и микроэлементах.

Но заболевания могут нарушить содержание химических элементов в органах и тканях: при рахите нарушается фосфорно-кальциевый обмен, при нефрите уменьшается содержание кальция, натрия, хлора и повышается содержание магния и калия. На поддержание нормального уровня минералов влияют гормоны.

Микро- и макроэлементы: в чем разница

Среди перечня есть и макроэлементы, и микроэлементы.

В основном это деление связано со степенью содержания элементов в организме:

  • Макроэлементы содержатся в концентрации выше 0,01%. Это кислород, углерод, водород, азот, кальций, фосфор, калий, натрий, сера, хлор, магний.
  • Микроэлементы присутствуют в нашем организме в концентрации от 0,00001% до 0,01%. Это железо, цинк, фтор, стронций, молибден, медь, бром, кремний, цезий, йод, марганец, алюминий, свинец, кадмий, бор и другие.

Также выделяют ультрамикроэлементы концентрацией ниже 0,00001%. Это селен, кобальт, ванадий, хром, никель, литий, барий, серебро и другие.

Установлено важное значение для организма многих элементов из группы микро- и ультрамикроэлементов. Так, дефицит макроэлементов (калия или кальция, например) человек способен достаточно долго не замечать и более-менее нормально переносить. Но даже небольшое отклонение в содержании микро- и ультрамикролементов вызывает серьезные проблемы.

Это объясняется важной ролью микроэлементов в нашем организме:

  • железо переносит кислород по тканям;
  • медь поддерживает обменные процессы;
  • марганец влияет на обновление клеток;
  • йод необходим для нормального функционирования щитовидной железы;
  • цинк участвует в формировании кровяных телец;
  • хром поддерживает здоровье нервной системы;
  • селен необходим для поддержания иммунитета.

Какие минералы нам жизненно нужны

Для нормальной жизнедеятельности нам необходимо 20 минеральных веществ. В организм они попадают с пищей, так что при сбалансированном рационе мы не сталкиваемся с дефицитом. Степень усвоения минералов зависит от состояния органов дыхания и пищеварения, уровень макро- и микроэлементов зависит от сезона: весной понижается, в начале осени растет.

Нехватка минералов, типичная для весны из-за бедного нутриентами рациона, отражается на самочувствии:

  • появляется слабость, мало сил;
  • необъяснимая сонливость;
  • кожа становится сухой, а ногти ломкими;
  • могут сильно выпадать волосы.

Не стоит самостоятельно назначать себе БАДы и витаминно-минеральные комплексы, без рекомендаций врача и сдачи биохимического анализа крови. Но вот пересмотреть свой рацион так, чтобы получать максимум минералов, под силу каждому. Достаточно лишь добавить фрукты, овощи, зелень, полноценный белок, а также орехи, семена, проростки, богатые макро- и микроэлементами.

Макро- и микроэлементы в рационе, польза для здоровья

Натрий. Системный электролит. Вместе с хлором регулирует водно-солевой обмен. Участвует в обновлении клеток. При недостатке натрия ухудшается пищеварение, при избытке возникает отеки. Нельзя резко снижать количество соли в рационе, норма составляет 1-2 грамма соли в день.

Где искать: поваренная соль (норма до 2х г в день), морская капуста, молоко, шпинат, урбеч из семян льна (около 30мг на 100г), урбеч из семян чиа (30мг на 100г), урбеч из семян мака (26 мг на 100г).

Хлор. Важен для производства соляной кислоты в желудке. Важен для проницаемости клеточных мембран.

Где искать: поваренная соль (NaCl).

Железо. При недостатке нарушается синтез гемоглобина в крови, развивается железодефицитная анемия. В сутки нужно 18 мг.

Где искать: печень и субпродукты, красное мясо, рыба (тунец, лосось), злаки, бобовые, яйца, шпинат, свекла, куркума, петрушка, тофу, спаржа, зелень, соя, креветки, помидоры, оливки, сухофрукты, урбеч из тмина (около 16,3 мг на 100г), урбеч из семян мака (9,7 мг на 100г), урбеч из конопли, урбеч из семян тыквы ( 8 мг на 100г).

Кальций. Основа костной ткани, составляющая кровяных телец. Необходим детям для нормального роста и развития, взрослым — для сердца и мышц, пищеварительной системы. Влияет на обмен веществ, повышает сопротивляемость организма инфекциям.

Где искать: молочные продукты, сыр, яйца, консервированная рыба (лосось, сардины), зелень, орехи, семена, кунжут, тофу, шпинат, тимьян, орегано, укроп, корица, урбеч из мака (около 1438 мг на 100г), урбеч из кунжута (около 730 мг на 100г) ,урбеч из тмина (около 690 мг на 100г)

Калий. Системный электролит, поддерживает здоровье сердечно-сосудистой системы, действует как мочегонное. При недостатке вызывает сердечную аритмию.

Где искать: бананы, картофель, батат, бобовые, помидоры, цельные зерна, авокадо, щавель, шпинат, папайя, куркума, урбеч из какао-бобов (около 1524 мг на 100г), урбеч из тмина (около 1351мг на 100г), урбеч из конопли (около 1200 мг на 100г), урбеч из семян льна (830 мг на 100г),  урбеч из фисташки (около 1025 мг на 100г), урбеч из семян тыквы (788 мг на 100г), урбеч из кешью (660 мг на 100г).

Магний. Входит в состав костной ткани, отвечает за синтез белков. Нормализует возбудимость нервной системы. Является спазмолитиком.

Где искать: орехи, соя, шпинат, морская капуста, помидоры, палтус, фасоль, зеленый горошек, яйца, проростки пшеницы, имбирь, гвоздика, урбеч из конопли (около 700 мг на 100г), урбеч из семян тыквы (550 мг на 100г), урбеч из тмина (258мг на 100г), урбеч из какао-бобов (499мг на 100г), урбеч амаранта (около 258 мг на 100г), урбеч из фисташки.

Фосфор. Содержится во всех тканях. Входит в состав костной ткани, участвует в энергообмене на уровне клеток, играет важную роль в метаболизме, улучшает работу нервной системы.

Где искать: красное мясо, молочные продукты, рыба, птица, хлеб, рис, овес, урбеч из конопли (1650 мг а 100г), урбеч из семян тыквы (1174 мг на 100г), урбеч из семян мака (870 мг на 100г),урбеч из какао-бобов (около 734 мг на 100г),  урбеч из кешью (593 мг на 100г), урбеч из амаранта (557мг на 100г).

Марганец. Участник белкового и фосфорного обмена и процессов окисления и выработки ферментов, а также синтеза витаминов группы В и гормонов. Стимулирует обновление клеток. Дефицит нарушает работу ЦНС, нормальное развитие скелета и снабжение тканей кислородом. Суточная потребность увеличивается с возрастом.

Где искать: растительная пища — зерновые культуры, дикий рис, бобовые, шпинат, ананас, рожь, соевые бобы, тимьян, зелень, помидоры, виноград, малина, клубника, кабачок, баклажан, гвоздика, корица, куркума, урбеч из конопли (7,6 мг на 100г), урбеч из мака (около 6,7 мг на 100г), урбеч из фундука (6,1 мг на 100г), урбеч из грецкого ореха (3,4мг на. 100г), урбеч из амаранта (3,3 мг на 100г).

Бром. Регулирует деятельность нервной системы, активирует половую функцию, вместе с хлором влияет на кислотность желудочного сока. Участвует в белковых связях сухожилий и хрящей. Переизбыток опасен угнетением функции щитовидки и нервной системы.

Где искать: содержится в хлебе, молочных продуктах, бобовых.

Медь. Обязательный элемент окислительно-восстановительных ферментов. Участвует в тканевом дыхании и кроветворении, усиливает действие цинка. Дефицит приводит к анемии. Потребность в меди увеличивается при воспалительных процессах, эпилепсии, анемии, циррозе печени.

Где искать: грибы, шпинат, зелень, семечки, ячмень, капуста, кукуруза, бобовые, урбеч из какао-бобов (3,8 мг на 100г), урбеч из кешью (2,1 мг на 100г), урбеч из подсолнечника (1,7 мг на 100г), урбеч из грецкого ореха (1,5 мг на 100г), урбеч из семян льна (1,2 мг на 100г), урбеч из чиа, урбеч из семян тыквы.

Цинк. Структурный компонент гормона поджелудочной железы. Участвует в формировании кровяных телец и обмене более 20 ферментов. Влияет на рост и развитие, половое созревание мальчиков. Дефицит приводит к нарушению полового развития мальчиков, вызывает заболевания ЦНС.

Где искать: устрицы и морепродукты, говяжья печень, яйца, бобовые, грибы, шпинат, спаржа, красное мясо, йогурт, овес, чеснок, урбеч из конопли (около 9,9 мг на 100г), урбеч из мака (около 7,9 мг на 100г), урбеч из семян тыквы ( 7,4 мг на 100г ), урбеч из кедрового ореха ( 6,8 мг а 100г), урбеч из кешью (5,8 мг на 100г), урбеч из тмина ( около 5,5 мг на 100г), урбеч из грецкого ореха (3 мг на 100г), урбеч из амаранта  (2,8 мг на 100г).

Молибден. Входит в состав ферментов, влияет на вес и рост, препятствует кариесу. Дефицит связан с задержкой роста

Где искать: помидоры, лук, морковь, субпродукты.

Селен. Участвует в обмене аминокислот, сохраняет витамин Е и защищает клетки от свободных радикалов. Необходим для укрепления иммунитета.

Где искать: рыба (треска, палтус, тунец, лосось), семена, отруби, баранина, индейка, говяжья печень, горчица, грибы, ячмень, сыр, чеснок, тофу, урбеч из семя льна, урбеч из фисташки, урбеч из тмина, урбеч из семян чиа, урбеч из семян тыквы, урбеч из кешью, урбеч из миндаля.

Хром. Нормализует углеводный обмен, участвует в образовании инсулина, регулирует уровень глюкозы в крови, снижает уровень холестерина, защищает сердце и сосуды. Отвечает за здоровье нервной системы. При дефиците, в том числе из-за употребления рафинированных продуктов, может развиваться ожирение, образуются отеки, повышается давление.

Где искать: цельнозерновой хлеб, цельнозерновые каши (гречка, перловка, пшено), финики, бобовые, топинамбур, субпродукты, рыба и морепродукты, яйца, грибы.

Ванадий. Влияет на проницаемость клеточных мембран, повышает устойчивость зубов к кариесу, снижает уровень холестерина.

Где искать: грибы, соя, зелень (петрушка, укроп), хлебные злаки, печень, рыба и морепродукты.

Йод. Необходим для синтеза гормонов щитовидной железы. Также необходим как антиоксидант, для молочных и слюнных желез, слизистой желудка. Необходим для нормальной работы иммунной системы. При недостатке развивается эндемический зоб, при избытке — гипотиреоз.

Где искать: морская рыба, морская капуста, моллюски, йодированная соль, яйца, клубника, сыр моцарелла, йогурт, молоко.

Кремний. Необходим для формирования эритроцитов, нормального синтеза коллагенов, образования костной ткани. Отвечает за здоровое функционирование соединительной ткани.

Где искать: цельнозерновые крупы (нешлифованный рис, овес, просо, ячмень, гречка), бобовые, арахис, грецкие орехи, миндаль, фундук, фисташки, капуста, огурцы, картофель, редис, земляника, малина, ананас, дыня, банан, авокадо, инжир.

Сера. Участвует в образовании кератина, белка в суставах, ногтях и волосах. Участвует в углеводном обмене,  входит в состав аминокислот и витаминов группы В. Способствует секреции желчи в печени. Дефицит встречается редко и связан с белковыми дефицитами.

Где искать: белковая пища — мясо, рыба, птица, а также крупы, лук, горчица.

Кобальт. Необходим для синтеза витамина В12. Это единственный витамин, который содержит минеральное вещество, таким образом. В12 необходим для нормального белкового обмена, профилактики анемии и нормального развития нервной ткани.  

Где искать: продукты животного происхождения — печень и другие субпродукты, красное мясо, яйца, индейка. Также в бобовых: фасоль, горох, нут, соя, чечевица, маш.

Источник: https://urbech.net/microelementy/

Кроветворение: процессы и главные факторы | Научные статьи

Микроэлемент участвующий в кроветворении

Постоянство клеточного состава крови, его обновление осуществляются благодаря взаимосвязи крови и органов, образующих ее элементы (кроветворных).

В костном мозге созревают красные кровяные тельца, зернистые лейкоциты и тромбоциты. Общий вес его у взрослого человека приблизительно составляет 1500 г. Лимфатические узлы, селезенка образуют лимфоциты и моноциты.

Особенности процесса образования клеток крови: теории и факты

Процесс образования клеток крови идет непрерывно в течение всей человеческой жизни, интенсивность его строго соответствует потребностям организма.

По одной из современных теорий следует, что клетки крови человека — эритроциты, лейкоциты и тромбоциты происходят из единой родоначальной материнской клетки, так называемой «стволовой».

Путем ее деления и развития появляются клепки, предопределяющие различные ветви кроветворения: образование эритроцитов, зернистых лейкоцитов (гранулоцитов), незернистых лейкоцитов (агранулоцитов), тромбоцитов.

Порожденная общей «стволовой» клеткой, каждая из этих ветвей имеет и свою собственную родоначальную клетку. В процессе деления и постепенного созревания и преобразования этих костномозговых элементов появляются зрелые клетки, поступающие в кровь.

К чести русской науки следует оказать, что мысль о происхождении всех клеток крови из единого источника принадлежит знаменитому русскому ученому-гистологу А. А. Максимову, создавшему еще в 1900—1914 гг. свою теорию кроветворения. Эти исследования нашли подтверждение и дальнейшее развитие в трудах советских исследователей.

Вместе с тем в некоторыми учеными высказывалась мысль о том, что еще до рождения человека в кроветворных органах предопределен вид каждой кроветворной линии — гранулоцитарной, эритроцитарной, лимфоцитарной. В пользу такой точки зрения приводятся данные биохимических исследований клеток крови и костного мозга.

Так, советские биохимики П. Ф. Сейц и П. С. Луганова обнаружили, что для определенных линий кроветворных элементов характерен определенный вид энергетического обмена.

На основании этих данных они полагали, что и происхождение клеточных форм на каком-то этапе должно быть различным, поскольку характерный тип обмена (как группа крови, резус-фактор), возникший в клетке в начальном периоде ее развития, сохраняется во всех клеточных популяциях (производных данной линии).

Из всего сказанного можно сделать заключение о том, что кровь обладает многообразными функциями, имеющими первостепенное значение для существования организма. Всякое нарушение постоянства состава этой внутренней среды организма чревато далеко идущими последствиями, приводящими к нарушению здоровья человека.

Как осуществляется кроветворение: механизмы

Процессы разрушения красных кровяных шариков и их образования строго сбалансированы. Если организм теряет какое-то количество крови, то не проходит 2—3 недель, как снова восстанавливается исходный уровень числа эритроцитов и концентрации гемоглобина. При этом всегда наблюдается значительное убыстрение образования красных кровяных телец (эритропоэза) в костном мозге.

Не вызывает сомнений факт существования в организме особых механизмов регуляции эритропоэза, хорошо выявляемых тогда, когда под влиянием каких-либо причин резко уменьшается количество эритроцитов и в связи с этим развивается кислородное голодание — гипоксия.

Законно предположить, что уменьшение снабжения организма кислородом автоматически приводит к увеличению продукции красных кровяных телец.

  • Хорошо известно, что у жителей высокогорья, а так же у альпинистов, достигающих больших высот, число эритроцитов заметно повышается по сравнению с исходной нормой.
  • И наоборот, если в барокамере создать повышенное давление кислорода, то через некоторое время можно отметить постепенное затухание, «вялость» красного кроветворения, вплоть до полного его прекращения.

Возникает вопрос о механизме «эритроцитостимулирующего» действия кислородного голодания. Большим количеством исследований установлено, что этот фактор убыстряет кроветворение через посредство особого вещества, стимулирующего эрицропоэз и получившего название «эритропоэтин».

В 1906 г. два французских исследователя — Карно и Дефляндер — обнаружили, что сыворотка крови, взятая у кроликов через 20 часов после массивной кровопотери и введенная другому здоровому кролику, способствовала у последнего приросту эритроцитов на 2—3 млн. в 1 мм3 крови, а также увеличению количества гемоглобина.

Последующие эксперименты показали, что кислородная недостаточность любого происхождения способна повышать эритростимулирующие свойства кровяной сыворотки.

Наиболее убедительные доказательства существования в организме стимулятора красного кроветворения были представлены в опытах на искусственно сращенных между собой (наподобие сиамских близнецов) крысах.

Этот интересный опыт выглядел так: одна из крыс дышала газовой смесью, содержащей пониженное количество кислорода, а ее партнер — воздухом с нормальным содержанием кислорода. И оказалось, что у обоих животных в костном мозге происходило одинаковое разрастание клеток «красного ряда», а в периферической крови — значительное увеличение эритроцитов.

Объяснить это можно следующим образом: у крысы под влиянием кислородного голодания образуется вещество эритростимулирующего действия, т. е. эритропоэтин, который переходит с кровью через сращенные кровеносные сосуды в организм партнера и вызывает у него активизацию кроветворения.

В каком месте организма образуется эритропоэтин?

Многочисленные клинические наблюдения и особенно опыты на животных представили убедительные аргументы в пользу почечного происхождения эритропоэтина.

Было показано, что двустороннее удаление почек ликвидирует способность организма образовывать эритропоэтин в ответ на кровопотерю или на недостачу кислорода по другой причине. Последующая же подсадка почки, взятой от другого животного, вызывала очень быстрое восстановление эритропоэза в костном мозге.

Роль витамина В12 в кроветворении

В кроветворении принимают участие различные витамины, среди которых особая роль принадлежит витамину В12, содержащему кобальт.

Источником витамина В12 служат продукты животного происхождения; в растительных продуктах он отсутствует. Благодаря этому витамину поддерживается нормальный процесс созревания эритроцитов у здорового человека.

В сутки взрослому человеку необходимо 3—5 мг витамина В12. Как показали современные исследования, витамин В12, попавший в организм с пищей, всасывается в кишечнике лишь при соединении его с особым белком — гастромукопротеином (который иначе называется «внутренний фактор»).

Гастромукопротеин вырабатывается у человека железами желудка и обладает способностью образовывать с витамином В12 комплексное соединение. Оказалось, что этот белок предохраняет витамин от пожирания микроорганизмами, заселяющими кишечник. Таким образом, он выступает в роли «проводника» витамина В12 и спасает его от разрушающего действия микробов.

Всосавшийся витамин накапливается в печени и затем используется для целей кроветворения по мере необходимости.

Установлено, что витамин B12 принимает активное участие в образовании соединений, являющихся составными частями нуклеиновых кислот, — тех самых кислот, коими так богаты ядра клеток и которые определяют основные наследственные признаки организма.

В случае нехватки витамина B12 задерживается синтез нуклеиновых кислот, в результате чего неизбежно нарушается деление постоянно размножающихся кроветворных клеток. Тогда в костном мозге вместо нормальных эритробластов появляются огромные, медленно созревающие клетки, получившие название мегалобластов (от греческого слова «мегалос» — огромный).

На этой почве происходит развитие тяжелого малокровия — злокачественная анемия.

Роль гормонов и нервной системы в кроветворении

Вся сложная, необыкновенно подвижная система крови находится под постоянным влиянием эндокринной и нервной систем. Гормоны (от греческого слова «гормао» — возбуждаю), выделяемые эндокринными органами (железами внутренней секреции), попадают непосредственно в кровь.

Через нее гормоны осуществляют связь одних органов и систем с другими. Они оказывают регулирующее влияние на различные функции организма, в том числе и на кроветворение. Так воздействуют гормоны, вырабатываемые передней долей гипофиза, щитовидной железой, корой надпочечников, половыми железами.

Значительное влияние на процессы кроветворения и распределения элементов крови в сосудах и депо оказывает и, нервная система.

ссылкой:

Источник: https://unclinic.ru/reguljacija-krovetvorenija-mehanizmy-i-vazhnye-faktory/

Микроэлементы – их польза для организма

Микроэлемент участвующий в кроветворении

Человеческий организм не перестаёт удивлять тайнами и секретами, сокрытыми внутри. Они охотно появляются в поле зрения учёных и любознательных экспериментаторов, и всем своим загадочным видом требуют разгадок. Поиском ответов на эти животрепещущие вопросы и занимается человечество на протяжении всего времени своего существования.

Многое уже известно и доступно нашему вниманию. Например, минеральные вещества, коих в теле организма насчитывают более 80. Некоторые популярные макроэлементы мы разобрали в предыдущей статье. Сегодня же окунёмся в микромир, чтобы познакомиться с минеральными малютками и узнать, какую пользу они приносят нашему богатому внутреннему миру.

Микроэлементы

Миллиграммы этих братьев способны обеспечить бесперебойную работу, а их дефицит повлечёт недобрые изменения, которым мы совсем не будем рады.

Давайте же скорее узнаем, кто они – жители замечательного микромира. Напомним, что мы группируем элементы с точки зрения количественной составляющей. Каждого микроэлемента в теле – по пальцам пересчитать, совсем чуть-чуть, но от этого они не приобретают статуса «Незначимый», и ценятся наряду со всеми необходимыми нам веществами.

Железо

Задействовано в окислительных процессах организма. Положительно влияет на иммунную систему.

Одно из знакомых нам действий – кроветворение происходит при участии этого элемента. Он производит гемоглобин, миоглобин и другие ферменты. Способствует внутриклеточному обмену, и помогает сохранять кислород в крови.

Борется со стрессами, усталостью и перенапряжением. Полезен для здоровья кожи и её внешнего вида.

Медь

Нужна для насыщения клеток кислородом, производства гемоглобина. Помогает железам внутренней секреции функционировать нормально. Вырабатывает инсулин и адреналин. Нормализует деятельность щитовидной железы.

Обладает антиоксидантными свойствами. Участвует в создании коллагена, что влияет на эластичность кожного покрова.

Является составляющей меланина, воздействуя на пигментацию кожи и волос. Способствует хорошему загару, благодаря содействию в усвоении витамина D.

Способствует усвоению железа.

Марганец

Помогает создавать клетки, влияя на их здоровый рост. Участвует в обращении крови. Способствует обмену жиров, углеводов, белков и витаминов.

Антиоксидант и помощник против вирусов. Благодаря ему организм производит интерферон.

Формирует тироксин, оказывая положительное воздействие на деятельность щитовидной железы. Усиливает инсулиновое воздействие, и помогает поддерживать уровень холестерина в норме.

Поддерживает нормальное состояние костной ткани. Благотворно сказывается на мышечных рефлексах.

Цинк

Участвует в окислительно-восстановительных процессах и тканевом дыхании. Входит в состав многих ферментов.

Улучшает деятельность некоторых желёз. Помогает в функционировании эндокринных систем. Нормализует обмен жиров.

Защищает от вирусов, грибков и простуд. Способствует заживлению ран.

Повышает умственную деятельность, предотвращает слабоумие и избавляет от депрессии.

Йод

Контролирует водно-солевой баланс, обмен жиров, белков и углеводов. Регулирует энергетический обмен и температуру тела.

Участвует в выработке гормона тироксина. Способствует здоровью щитовидной железы

Способствует здоровому развитию – физическому и психическому. Помогает сохранять жизненный тонус. Оказывает успокаивающее действие на нервную систему.

Влияет на успешное зачатие и последующее развитие плода.

Фтор

Участвует в создании клеток и биохимических реакциях. Укрепляет иммунную систему. Повышает защиту от радиации.

Влияет на развитие зубной и костной ткани. Приводит в норму фосфоро-кальциевый обмен. Нормализует рост ногтей и волос.

Выводит тяжёлые металлы и радионуклиды. Угнетает размножение и замедляет деятельность вредоносных бактерий.

Кобальт

Участвует в кроветворении. Влияет на образование эритроцитов в связке с медью и железом.

Участвует в процессах синтеза ДНК и РНК.

Благотворно сказывается на работе нервной системы. Бережёт от психических расстройств, снижает утомляемость и раздражительность.

Регулирует процессы метаболизма. Налаживает функционирование печени, поджелудочной железы и прилегающих органов.

Улучшает состояние костной ткани, воздействует на деление клеток.

Необходим для синтеза витамина B12.

Никель

Совместно с кобальтом, медью и железом участвует в кроветворении. Регулирует обмен жиров. Насыщает кислородом клетки тканей и мозга.

Понижает давление. Усиливает деятельность гипофиза. Участвует в работе ДНК.

Необходим для нормального роста организа, а также развития здорового плода.

Помогает окислять витамин C.

Селен

Важен для синтеза белков.

Повышает иммунитет. Поддерживает здоровье печени. Выводит тяжёлые металлы.

Играет роль антиоксиданта. Защищает от свободных радикалов. Увеличивает продолжительность жизни.

Снижает риск сердечно-сосудистых заболеваний. Благотворно влияет на кровообращение.

Поддерживает функцию щитовидной железы. Входит в состав спермы – регулирует репродукцию.

Хром

Участвует в регуляции минерального и углеводного обмена. Помогает усваивать сахар. Расщепляет липиды, выводит холестерин. Задействован в процессе создания инсулина.

Повышает работоспособность и выносливость организма.

Влияет на показатели давления, нормализует его.

Способствует выведению токсинов и радионуклидов.

Повышает мышечный тонус. Сохраняет кости крепкими.

Микроэлементы В ПРОДУКТАХ ПИТАНИЯ

Хочется не доводить до состояния дефицита и иметь постоянный приток этих важных элементиков. Как всегда, еда нам в помощь. И вновь табличное оформление для красоты и наглядности.

МИКРОЭЛЕМЕНТЫ
НАЗВАНИЕФОРМУЛАПРОДУКТЫ ПИТАНИЯ
ЖелезоFeГорох, фасоль, чечевица, грибы, яблоки, груши, персики, хурма, спаржа, шпинат, инжир, чернослив, курага, изюм, морковь, капуста, свёкла, репа, морские водоросли.
МедьCuБобовые, шпинат, зелень, грибы, кунжут, кешью, грецкие орехи, фисташки, проростки пшеницы, ячмень, греча, чернослив, свёкла, помидоры, морковь, капуста, баклажаны, имбирь, базилик, тимьян.
МарганецMnПроростки пшеницы, овсяная крупа, греча, горох, фасоль, зеленые части овощей, капуста, свёкла, баклажаны, листья салата, миндаль, фундук, ананас, слива, малина, чеснок, тимьян, куркума, корица
ЦинкZnБобовые, кукуруза, зародыши пшеницы, тыквенные семечки, семена льна, грибы, вишня, груши, яблоки, сливы, финики, инжир, зелёные овощи, свёкла, морковь, капуста, спаржа, шпинат, базилик, семена сельдерея
ЙодIМорская капуста, зелень, греча, овсяная крупа, хурма, абрикосы, фейхоа, яблоки, вишня, клюква, клубника, грецкий орех, морковь, картофель, баклажаны, зелёный горошек.
ФторFПроросшие зёрна, греча, овсяная крупа, орехи, чай, мёд, тыква, картофель, капуста, огурцы, помидоры, яблоки, финики, чернослив, тмин, шпинат, одуванчик.
КобальтCoБобовые, манная крупа, пшеничная крупа, рис, свёкла, капуста, морковь, кукуруза, огурцы, шпинат, петрушка, виноград, абрикосы, груша, клюква, чёрная смородина, земляника.
НикельNiСоя, фасоль, горох, чечевица, овсяная крупа, шпинат, капуста, редис, свёкла, морковь, картофель, груша, яблоки, вишня, слива, виноград, абрикосы, какао.
СеленSeКукуруза, ячмень, бобовые, тофу, грибы, морская капуста, бразильский орех, чеснок, сена чиа, семена подсолнечника, кокос, капуста, шпинат.
ХромCrФундук, бразильский орех, зародыши пшеницы, мак, редис, капуста, лук, кукуруза, помидоры, финики, яблоки, груша, виноград, апельсины, бананы, базилик.

Каждый хочет быть здоровым человеком, не причинять вред организму, и жить полноценной жизнью. Даже скорее – это обязанность каждого человека.

Чтобы понимать, как сохранить здоровое состояние, нужно обладать информацией о процессах, происходящих в теле. Поэтому будьте любознательны, открывайте для себя тайны внутреннего мира и, конечно же, отдавайте предпочтение здоровому образу жизни во всём многообразии его понимания.

Источник: https://algaprof.ru/lenta/mineralnye-vesestva-mikromir

Эритропоэз. Роль железа, витаминов и микроэлементов в кроветворении

Микроэлемент участвующий в кроветворении

Предыдущая статья.
6.1.1. Функции и свойства эритроцитов. Гемоглобин. Старение и разрушение эритроцитов в организме.

Под эритропоэзом понимают процесс образования эритроцитов в костном мозге.

Первой морфологически распознавае­мой клеткой эритроидного ряда, образующейся из колониеобразующей единицы эритроцитарной (КОЕ-Э) — клетки-предшественницы эритроидного ряда, является проэритробласт, из которого в ходе 4-5 последующих удвоений и созревания образуется 16-32 зрелых эритроидных клеток.

(Например, 1 проэритробласт → 2 базофильных эритробласта I порядка — (удвоение) → 4 базофильных эритробласта II поряда → 8 полихроматофильных эритробластов I порядка → 16 полихроматофильных эритробластов II порядка → 32 полихроматофильных нормобласта → 32 оксифильных нормобласта → денуклеация нормобластов → 32 ретикулоцита → 32 эритроцита).

Эритропоэз в кост­ном   мозге   (до   формирования   ретикулоцита)   занимает   5  дней.

В костном мозге человека и животных эритропоэз (от проэритробласта до ретикулоцита) протекает при взаимодействии эритроидных клеток с макрофагами костного мозга. Эти клеточные ассоциации получили название эритробластических островков (ЭО) (рис.6.2.).

рис.6.2.

рис.6.2.Эритробластический островок костного мозга человека.1-эритробласт

2-цитоплазма макрофага.

У здоровых людей в костном мозге содержится до 137 ЭО на мкг ткани, при угнетении же эритропоэза их количество может уменьшаться в несколько раз, а при стимуляции —увеличиваться.

Макрофаги ЭО играют важную роль в физиологии эритроидных клеток, влияя на их размножение (пролиферацию) и созревание за счет:

  1. Фагоцитоза вытолкнутых из нормобластов ядер;
  2. Поступления из макрофага в эритробласты с помощью пиноцитоза ферритина, других пластических веществ, необходимых для развития эритроидных клеток;
  3. Секреции эритропоэтинактивных веществ;
  4. Высокого сродства к эритроидным клеткам-предшественницам, позволяющим макрофагам создавать бла­гоприятные  условиях для  развития  эритробластов.

Из костного мозга в кровь поступают ретикулоциты, в течение суток созревающие в эритроциты. Поэтому количество ретикулоцитов в крови отражает эритроцитарную продукцию костным мозгом, и по их количеству в крови судят об интенсивности эритропоэза. У человека их количество составляет 5- 10 %. За сутки в 1 мкл крови поступает 60-80 тыс. эритроцитов.

В 1 мкл крови у мужчин содер­жится  5+0,5  млн,  а  у женщин  —  4,5±0,5  млн  эритроцитов.

Гуморальным регулятором эритропоэза является гормон эритропоэтин. Основным источником его у чело­века являются почки, их перитубулярные клетки — в них образуется до 85-90 % гормона, остальное количество вырабатывается в мак­рофагах (купферовские клетки и др.).

Синтез и секреция эритропоэтина

Синтез и секреция эритропоэтина определяется уровнем оксигенации почек. Структурой почек, чувствительной к гипокисии, является гемсодержащий белок перитубулярных клеток, связывающий молекулу кислорода. При доста­точной оксигенации почек оксиформа гемопротеина блокирует ген, регулирующий синтез эритропоэтина.

В отсутствии кислорода деоксиформа гемопротеина прекращает тормозить синтез эритропоэтина. При дефиците кислорода в почечных структурах активируются чув­ствительные к гипоксии ферменты. Например, фосфолипаза А2 от­ветственная за синтез простагландинов, в т.ч. Е1 и Е2-, активиру­ющих аденилатциклазу и вызывающих рост концентрации цАМФ в перитубулярных  клетках почек,  синтезирующих  эритропоэтин.

  Лактан, адреналин, норадреналин, взаимодействующие с В2-адренорецепторами почек, также активируют аденилатциклазную систему, при этом нарастает концентрация цАМФ и цГМФ, вызывающих усиле­ние синтеза и секрецию эритропоэтина в кровь.

Так, продукцию эритропоэтина стимулирует пребывание человека в горах, где рО2 в атмосферном воздухе снижено; кровопотеря, уменьшающая кисло­родную емкость крови и т.д. У человека количество эритропоэтина составляет 0,01-0,08 МЕ/мл плазмы, но при гипоксии оно может возрастать в 1000 и более раз. Существует взаимосвязь между ве­личиной гематокрита и уровнем эритропоэтина в плазме.

При гематокрите, равном 40-45, количество эритропоэтина составляет 5-80 милиЕД/мл, а при гематокрите равном 10-20 — 1-8 ЕД/мл плазмы. Эритропоэтин усиливает пролиферацию клеток-предше­ственниц эритроидного ряда — КОЕ-Э, а также всех способных к делению эритробластов и ускоряет синтез гемоглобина во всех эритроидных клетках, включая ретикулоциты.

Эритропоэтин «запускает» в чувствительных к нему клетках синтез иРНК, необходимых для образования энзимов, участвующих в формировании гема и глобина. Гормон увеличивает также кровоток в сосудах, окружающих эритропоэтическую ткань в костном мозге, и увеличивает выход в кровь ретикулоцитов  из  его  синусоидов.

Торможение эритропоэза

Торможение эритропоэза вызывают особые вещества — ингибито­ры эритропоэза, образующиеся при увеличении массы циркулиру­ющих эритроцитов, несоответствующей потребностям тканей в кис­лороде. Они обнаруживаются, например, в крови у спустившихся с гор людей. Ингибиторы эритропоэза удлиняют цикл деления эритроидных  клеток,  тормозят в них синтез гемоглобина.

Эритропоэз активируют увеличивающие чувствительность тка­ни костного мозга к эритропоэтину мужские половые гормо­ны — андрогены. Стимулирующее влияние оказывают не сами андрогены, а продукты их 5-В- редуктазного превращения — 5-В- Н- метаболиты.

Женские половые гормоны — эстрогены об­ладают противоположным действием на эритропоэз. После по­лового созревания устанавливающиеся различия в содержании эритроцитов и гемоглобина с более высокими их значениями у мужчин, чем у женщин, связаны с указанным эффектом поло­вых гормонов.

Катехоламины, взаимодействуя с В-адренорецепторами КОЕ-Э, усиливают пролиферацию этих эритроидных клеток- предшественниц.

Из 4 — 5 г железа, содержащегося в организме, 1/4 составляет резервное железо, а остальное — функци­онально активно.

Из этого количества в состав гемоглобина эрит­роцитов входит 62-70%, 5-10% содержится в миоглобине, осталь­ное — в тканях, где оно участвует во многих метаболических про­цессах: в составе металлосодержаших энзимов обеспечивает митохондриальный транспорт электронов, синтез ДНК и деление клеток, метаболизм катехоламинов (гормонов мозгового вещества надпочеч­ников), детоксикационные механизмы, т.е. снижающие активность токсических веществ, поддерживая, в частности, концентрацию цитохрома Р450. Поэтому дефицит железа в организме человека пони­жает  его   физическую  активность  и  работоспособность.

В организме человека происходит интенсивный обмен железа, оно постоянно перемещается из мест его накопления к местам испо­льзования и обратно. Так, эритропоэз ежесуточно требует от 20 до 25 мг железа. Почти все это количество железа костный мозг по­лучает за счет его повторного использования.

Только около 1 мкг железа вновь ежедневно всасывается в кишечнике, пополняя потери с калом, мочой, потом и слущиванием кожи. У молодых женщин потери железа больше (менструация, беременность).

Fe++ поступает в эритробласты с белком плазмы — трансферрином, гликопротеином (MB 76000), мигрирующим при электрофорезе белков плазмы вместе с В1— глобулинами.   Плазма  содержит от   1,8 до  2,6  мг/л  трансферрина. Поскольку 1 мг белка связывает 1,25 мкг Fe++, то в общем объеме плазмы содержится около 3 мг железа.

В норме лишь 1/3 трансферрина плазмы насыщена железом. Дополнительное количе­ство железа, которое может связываться с ненасыщенным железом трансферрином плазмы, определяет ненасыщенную железосвязывающую способность крови.

Общее количество железа, которое может быть связано трансферрином, называется общей железосвязывающей способностью крови (ОЖСК). Концентрация железа в плазме дости­гает у мужчин 120 мг%, у женщин — 80 мг%. ОЖСК нормальной сыворотки крови составляет 290-380 мг%, с мочой выводится за сутки  60-100  мкг железа.

Комплекс трансферрин-железо фиксируется на рецепторах мем­браны эритробласта, количество рецепторов уменьшается в ходе со­зревания эритроидных клеток, исчезая после созревания ретикулоцитов. Поэтому зрелый эритроцит не включает железо.

Освобожде­ние железа из комплекса трансферрин-железо обеспечивается энер­гией АТФ. Молекула трансферрина, отдавшая железо, смещается с мембранного участка молекулами трансферрина, связанными с же­лезом, поскольку их сродство к рецепторам более сильное.

Железо, поступившее в эритробласт, используется в митохондриях для син­теза гема и депонируется в эритробласте в виде резерва.

В макро­фагах печени, костного мозга резервное железо депонируется в молекуле ферритина, состоящей из 24 единиц белка апоферритина, образующих подобие скорлупы, в центре которой аккумулируется железо. Молекулы ферритина, в свою очередь, образуют внутри лизосом большие аморфные нерастворимые агрегаты — гемосидерин.

Таким образом, ферритин и гемосидерин — это формы резервного железа в клетках. При освобождении железа из клеточного резерва оно переводится в двухвалентное состояние (благодаря энзиму ксантиноксидазе, аскорбиновой кислоте и др.), соединяется с трансфер­рином и транспортируется  к  эритробластам.

Абсорбция железа эпителиальными клетками желудочно-кишечно­го тракта усиливается при увеличении концентрации трансферрина в слизистой кишечника, эритропоэтической активности костного мозга и снижается при увеличении концентрации железа в клетках сли­зистой оболочки кишечника.

Абсорбция Fe++ в кишечнике более эффективна, чем Fe+++ и вещества, поддерживающие двухвалентную форму железа, его растворимость — аскорбиновая кислота, фрукто­за, аминокислоты (цистеин, метионин), ускоряют абсорбцию железа. Важным условием абсорбции железа в кишечнике является его био­доступность.

Например, железо, входящее в состав гема (мясные продукты, кровяная колбаса) лучше всасывается вкишечнике, чем железо  из  пищи  растительного  происхождения.

Для нор­мального метаболизма кроветворная ткань нуждается в поступлении в костный мозг ряда вешеств.
Витамин В12 и фолиевая кислота необходимы для синтеза нуклеопротеинов, созревания и деления ядер клеток.

   При их дефиците  в  наиболее  интенсивно делящейся  ткани организма — эритроидной, раньше, чем в других, возникают нару­шения, выражающиеся в развитии анемии. Она связана с формиро­ванием в костном мозге огромных ядросодержаших эритроидных клеток — мегалобластов с замедленной скоростью созревания.

Об­разующиеся из них большие эритроциты — мегалоциты обладают резко укороченным периодом жизни. Вследствие указанных наруше­ний — замедленного поступления эритроцитов в кровь и быстрого их разрушения в ней, возникает анемия. Это заболевание эффек­тивно излечивается введением витамина В12.

Причина дефицита В12 в организме связана с утратой способности париетальных клеток желудка продуцировать «внутренний фактор» — гликопротеин (MB 60000), который, связывая витамин В12 , поступающий с пищей, предохраняет его от расщепления пищеварительными ферментами.

Эти нарушения возникают при атрофии слизистой желудка, часто наблюдающейся, например, у стариков (глава 20). И хотя запаса витамина В12 в печени хватает взрослому человеку на 1-5 лет, постепенное  его  истощение  приводит к  заболеванию.

Витамин В12 содержится в больших количествах в таких про­дуктах питания, как печень, почки, яйца. Ежесуточная потребность ор­ганизма в витамине В12 достигает 5 микрограмм, содержание в плаз­ме крови — 150-450 микрограмм/л.

Поступив в кишечник, комплекс гликопротеин- В12 фиксируется специальными рецепторами слизистой тонкого кишечника и витамин поступает в интестинальные клетки, и далее — в кровь, в которой с помощью особых транспортиру­ющих молекул — транскобаламинов (I, II и III типов) переносятся к печени и костному мозгу.

Транскобаламины I и III типа проду­цируются лейкоцитами, II — макрофагами. Поэтому при гиперлей­коцитозе  отмечается гипервитаминоз  В12.

Фолиевая кислота (витамин В9) поддерживает синтез ДНК в клетках костного мозга благодаря обеспечению этого процесса одним из нуклеотидов — диокситимидилатом, образующимся в ре­зультате митилирования диоксиуридиловой кислоты в присутствии тетрагидрофолата (одной из редуцированных форм фолиевой кисло­ты).

Ежедневная нормальная потребность организма человека в фолиевой кислоте составляет 500-700 мгр. Ее резерв в организме равен 5- 10 мг, причем треть его находится в печени. Недостаточное поступление фолиевой кислоты с пищей уже через несколько ме­сяцев вызывает анемию, связанную с ускоренным разрушением эритроцитов.

Фолиевой кислотой богаты овощи (шпинат), дрожжи, молоко.

Витамин В6 (пиридоксин) является кофактором (т.е. допол­нительным фактором активности) АЛК-синтетазы (рис.6.1.), участвующей в образовании гема в эритробластах, и его дефицит вы­зывает  анемию  вследствие  нарушенного  гемоглобинопоэза.

рис.6.1. Схема синтеза гемоглобина у человека.

Витамин С поддерживает основные этапы эритропоэза, спо­собствуя метаболизму фолиевой кислоты в эритробластах. Он участвует в метаболизме железа как на уровне его абсорбции в желу­дочно-кишечном тракте, так и мобилизациии депонированного в клетках железа.

Витамин Е (а-токоферол) осуществляет защиту фосфатидилэтаноламина мембран эритроцитов от перекисного окисления, уси­ливающего  гемолиз  эритроцитов.

Витамин РР. Защиту гемоглобина и мембраны эритроцитов от окисления осу­ществляет и витамин РР, являющийся одним из составляющих пиридиннуклеотидов   НАД  и   НАДФ.

Витамин В2 участвует в окислительно-восста­новительных реакциях и его дефицит вызывает у человека анемию гипорегенеративного  типа.

В метаболизме гемопоэтической ткани участвуют микроэлементы:
Медь, обеспечивающая лучшее всасывание железа в кишечнике и мобилизацию его резерва из печени и ретикулярных клеток;
Никель и Кобальт, имеющие отношение к синтезу гемоглобина и гемсодержаших молекул, способствующих утилизации железа.

Их недостаток вызывает анемию (например, в районах, где почвы бедны этими микроэлементами).
Селен, тесно воздействуя с витамином Е, защи­щает мембрану эритроцита от повреждения свободными радикалами.
Цинк—Почти 75% всего цинка в организме человека находится в эритро­цитах, в составе фермента карбоангидразы.

Недостаток цинка вызы­вает лейкопению.

Источник: https://doctor-v.ru/med/erythropoiesis/

Медицина и здоровье
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: