На рибосомах синтезируется

Содержание
  1. Строение и функции рибосом. Биосинтез белков и значение рибосом для организма
  2. Особенности строения
  3. Химический состав
  4. Образование в клетке
  5. Биосинтез белков на рибосомах
  6. Роль рибосом в организме
  7. Эндоплазматическая сеть. Аппарат Гольджи. Лизосомы. Клеточные включения
  8. Аппарат Гольджи = комплекс Гольджи
  9. Лизосомы
  10. Клеточные включения
  11. Рибосома – минифабрика по производству белков
  12. О генетическом коде
  13. Декодирование и синтез
  14. Работает как «рибозим»
  15. От низших — к высшим
  16. Где синтезируется рРНК. Рибосомные рибонуклеиновые кислоты рРНК: характеристика, строение и описание
  17. Историческая справка
  18. Характеристика РНК
  19. Ядрышко, его роль в синтезе
  20. Ядрышковый организатор
  21. Что такое рибосомы?
  22. Как кодируются гены р-РНК?
  23. Механизм образования р-РНК
  24. Особенности рибосомных кислот эукариотических клеток
  25. Рибосомные РНК прокариот
  26. Роль рибонуклеиновой кислоты в процессе трансляции
  27. Транскрипция и трансляция
  28. Репликация ДНК – удвоение, дупликация (лат. replicatio — возобновление, лат. duplicatio – удвоение)
  29. Транскрпиция (лат. transcriptio — переписывание)
  30. Трансляция (от лат. translatio — перенос, перемещение)
  31. Примеры решения задачи №1
  32. Пример решения задачи №2
  33. Пример решения задачи №3

Строение и функции рибосом. Биосинтез белков и значение рибосом для организма

На рибосомах синтезируется

Рибосомы — субмикроскопические немембранные органеллы, необходимые для синтеза белка. Они объединяют аминокислоты в пептидную цепь, образуя новые белковые молекулы. Биосинтез осуществляется по матричной РНК путем трансляции.

Особенности строения

Рибосомы находятся на гранулярном эндоплазматическом ретикулуме или свободно плавают в цитоплазме. Крепятся они к эндоплазматической сети своей большой субъединицей и синтезируют белок, который выводится за пределы клетки, используется всем организмом. Цитоплазменные рибосомы в основном обеспечивают внутренние потребности клетки.

Форма шаровидная или овальная, в диаметре около 20нм.

На этапе трансляции к мРНК может прикрепляться несколько рибосом, образуя новую структуру – полисому. Сами же они образуются в ядрышке, внутри ядра.

Выделяют 2 вида рибосом:

  • Малые – находятся в прокариотических клетках, а также в хлоропластах и митохондриальном матриксе. Они не связаны с мембраной и имеют меньшие размеры (в диаметре до 15нм).
  • Большие – находятся в эукариотических клетках, могут достигать в диаметре до 23нм, связываются с эндоплазматической сетью или крепятся к мембране ядра.

Схема строения

Строение обоих видов идентичное. В состав рибосомы входят две субъединицы — большая и малая, которые в сочетании напоминают гриб. Объединяются они при помощи ионов магния, сохраняя между соприкасающимися поверхностями небольшую щель. При дефиците магния субъединицы отдаляются, происходит дезагрегация и рибосомы уже не могут выполнять свои функции.

Химический состав

Рибосомы состоят из высокополимерной рибосомальной РНК и белка в соотношении 1:1. В них сосредоточено примерно 90% всей клеточной РНК. Малая и большая субъединицы содержат около четырех молекул рРНК, которая имеет вид нитей собранных в клубок. Окружены молекулы белками и формируют вместе рибонуклеопротеид.

Полирибосомы – это объединение информационной РНК и рибосом, которые нанизываются на нить иРНК. В период отсутствия синтезирующих процессов, рибосомы разъединяются и обмениваются субъединицами. При поступлении иРНК они снова собираются в полирибосомы.

Количество рибосом может изменяться в зависимости от функциональной нагрузки на клетку. Десятки тысяч находятся в клетках с высокой митотической активностью (меристема растений, стволовые клетки).

Образование в клетке

Субъединицы рибосом формируются в ядрышке. Матрицей для синтеза рибосомальной РНК является ДНК. Для полного созревания они проходят несколько этапов:

  • Эосома – первая фаза, при этом в ядрышке на ДНК синтезируется лишь рРНК;
  • неосома – структура включающая не только рРНК, но и белки, после ряда модификаций выходит в цитоплазму;
  • рибисома – зрелая органелла, состоящая из двух субъединиц.
Функции элементов рибосом
СтруктураСтроениеФункции
Большая субъединицаБольшая субъединица Треугольная, в диаметре 16нм, состоит из 3 молекул РНК и 33 белковых молекул Трансляция, декодирование генетической информацииТрансляция, декодирование генетической информации
Малая субъединицаВогнутая, овальная, в диметре 14нм, состоит из 1 молекулы РНК и 21 белковых молекулОбъединение аминокислот, создание пептидных связей, синтез новых молекул белка

Биосинтез белков на рибосомах

Трансляция или синтез белков на рибосомах с матрицы иРНК – конечный этап преобразования генетической информации в клетках. Во время трансляции информация, закодированная в нуклеиновых кислотах, переходит в белковые молекулы со строгой последовательностью аминокислот.

Трансляция – весьма непростой этап (в сравнении с репликацией и транскрипцией). Для проведения трансляции в процесс включаются все виды РНК, аминокислот, множество ферментов, которые могут исправлять погрешности друг друга. Самые важные участники трансляции – это рибосомы.

После транскрипции, новообразованная молекула иРНК, выходит из ядра в цитоплазму. Здесь после нескольких преобразований она соединяется с рибосомой. При этом аминокислоты приводятся в действие после взаимодействия с энергетическим субстратом – молекулой АТФ.

Аминокислоты и иРНК имеют разный химический состав и без постороннего участия не могут взаимодействовать между собой. Для преодоления этой несовместимости существует транспортная РНК. Под действием ферментов аминокислоты соединяются с тРНК.

В таком виде они переносятся на рибосому и тРНК, с определенной аминокислотой, прикрепляется на иРНК в предназначенном месте. Далее рибосомальные ферменты формируют пептидную связь между присоединенной аминокислотой и строящимся полипептидом.

После рибосома перемещается по цепи информационной РНК, оставляя участок для прикрепления следующей аминокислоты.

Рост полипептида идет до того момента, пока рибосома не встретит «стоп-кодон», который сигнализирует об окончании синтеза. Для освобождения новосинтезированного пептида от рибосомы включаются факторы терминации, окончательно завершающие биосинтез. К последней аминокислоте прикрепляется молекула воды, а рибосома распадается на две субъединицы.

Когда рибосома продвигается дальше по иРНК, она освобождает начальный отрезок цепи. К нему снова может присоединиться рибосома, которая начнет новый синтез. Таким образом, используя одну матрицу для биосинтеза, рибосомы создают одномоментно множество копий белка.

Роль рибосом в организме

  1. Рибосомы синтезируют белок для собственных нужд клетки и за ее пределы. Так в печени образуются плазменные факторы свертывания крови, плазмоциты продуцируют гамма-глобулины.
  2. Считывание закодированной информации с РНК, соединение аминокислот в запрограммированном порядке с образованием новых белковых молекул.
  3. Каталитическая функция – формирование пептидных связей, гидролиз ГТФ.
  4. Свои функции в клетке рибосомы выполняют более активно в виде полирибосом. Эти комплексы способны одновременно синтезировать несколько молекул белка.

Оцените, пожалуйста, статью. Мы старались:) (21 4,48 из 5)
Загрузка…

Источник: https://animals-world.ru/stroenie-i-funkcii-ribosom-biosintez-belkov-i-znachenie-ribosom-dlya-organizma/

Эндоплазматическая сеть. Аппарат Гольджи. Лизосомы. Клеточные включения

На рибосомах синтезируется

ЭПС – мембранное образование, которое по внешнему виду напоминает лабиринт, пронизывающий примерно половину пространства клетки. Эндоплазматическая сеть состоит из мембраны, эта сеть оплетает ядро и располагается дальше в цитоплазме, однако ретикулум замкнут из выходов в саму цитозоль не имеет.

Эндоплазматическая сеть есть двух видов: гладкая и шероховатая, она же гранулярная. На поверхностях ЭПС идет синтез двух вещей: белки и углеводы с липидами на пару. На поверхности шероховатой ЭПС синтезируются белки. Как было описано ранее, этим занимаются рибосомы, которых здесь множество. А на гладкой ЭПС – углеводы и липиды.

Для того чтобы не путать попробуйте придумать ассоциации. Мне помогает вот что: липиды и углеводы – источники энергии в клетке и организме в целом. Мы их потребляем в пищу, они проходят по множеству трубок: пищевод, толстый и тонкий кишечник.

Естественно, эти структуры не абсолютно гладкие, у тонкого кишечника внутренняя поверхность выстлана ресничками, а у толстого есть гаустры, но сама ассоциации трубки, источников энергии (углеводов и липидов) и гладкости помогают мне запомнить. Шероховатая ЭПС ассоциируется у меня с наждачной бумагой, на которой задерживаются частицы чего-либо.

Такая бумага, в моем восприятии, усеяна множеством шариков, которые и являются рибосомами, синтезирующими белки.

Конечно, клетка, специализирующаяся на синтезе белков будет иметь преимущественно гранулярную ЭПС, а клетка, синтезирующая углеводы и липиды, будет хорошо развитую гладкую ЭПС.

После синтеза необходимых соединений на мембранах ретикулума, вещества должны попасть к местам своего использования клеткой. Не случайно ЭПС имеет такую лабиринтообразную структуру.

Это как метро: с мембран = станций метро соединения = пассажиры заходят в вагоны=трубочки ЭПС и отправляются тука, куда им нужно.

Люди – по делам, а липиды, углеводы и белки – на биохимические реакции или для сохранения как ресурса.

Строение и расположение в клетке эндоплазматической сети

Аппарат Гольджи = комплекс Гольджи

Аппарат Гольджи обязан своему открытию и названию итальянскому гистологу Камилло Гольджи. Этот человек первым открыл уникальное окрашивание препаратов нервной ткани, что внесло большой вклад в развитие гистологии и физиологии 19-20 века. Камилло Гольджи в 1906 году получил Нобелевскую премию по физиологии и медицине.

Аппарат Гольджи представляет из себя систему цистерн, предназначенных для хранения веществ клеткой. Это как большая логистическая система. В цистернах аппарата Гольджи соединения могут быть подвержены модификации, упаковке в мембранные пузырьки, а затем транспорту в этих пузырьках в пункты назначения в цитоплазме или отбраковке, то есть выводу за пределы клетки.

Вполне логично разместить такой органоид клетки рядом с ЭПС, ведь ретикулум занимается синтезом, а аппарат Гольджи – транспортом и упаковкой. Так как Эндоплазматическая сеть – структура замкнутая, то для попадания соединений в аппарат Гольджи используются мембранные пузырьки. Они отшнуровываются от ЭПС, а оптом сливаются с комплексом Гольджи.

Так как в аппарат Гольджи поступают липиды, которые здесь же накапливаются, то эта структура занимается и «ремонтом клетки». Внутри комплекса Гольджи собирается участок мембраны, которые заключается в мембранный пузырек, а потом кусочек мембраны замещает поврежденный фрагмент.

Еще аппарат Гольджи производит лизосомы – мембранные пузырьки с ферментами. Речь об этих структурах пойдет дальше.

Строение и расположение аппарата Гольджи

Лизосомы

Лизосомы представляют из себя не просто мембранные пузырьки, они наполнены пищеварительными ферментами, способными расщепить сложные соединения до более простых, подходящих клетке.

При описании клеточной мембраны упоминалось, что она пластична, в связи с этим способная к фаго-, пино — и экзоцитозу. Когда твердая частица захватывается клеткой, то частица обволакивается мембраной, получается фагосома.

Если эта частица вводится в клетку для питания, то фагосома сливается с лизосомой, а ферменты лизосомы расщепляют содержимое пузырька.

До слияния фагосомы и лизосомы ферменты внутри лизосомы неактивны, ведь если бы они находились в активированном состоянии, то они бы переварили и мембрану лизосомы.

Как уже говорилось ранее, лизосомы формируются в аппарате Гольджи.

Роль лизосом в жизни клетки

Клеточные включения

Клеточные включения не являются органоидами, они используются органоидами для процессов жизнедеятельности. Это просто какие-либо частички на периферии клетки, в ее цитоплазме. Часто это зерна гликогена (у животных) и крахмала (у растений), ведь в виде этих соединений запасается энергия. Также клеточные включения могут быть белками и каплями жира.

Гликоген в клетках печени Крахмал в клетках картофеля Капли жира в клетках авокадо

Источник: https://spadilo.ru/endoplazmaticheskaya-set-apparat-goldzhi-lizosomy-kletochnye-vklyucheniya/

Рибосома – минифабрика по производству белков

На рибосомах синтезируется
: 11 Ноя 2006 , Загадки “ржавой” ДНК , том 12, №6

Одним из наиболее сложных процессов, осуществляемых живыми существами, является, пожалуй, синтез белков — важнейших структурных и функциональных «кирпичиков» любого организма. Подлинное понимание молекулярных процессов, лежащих в его основе, могло бы пролить свет на неимоверно давние события, связанные с тайной зарождения самой Жизни…

Во всех живых организмах, от простейших бактерий до человека, белки синтезируются специальными клеточными устройствами рибосомами. На этих уникальных фабриках происходит образование белковой цепи из отдельных аминокислот.

В клетках, ведущих интенсивный белковый синтез, рибосом очень много: так, в одной бактериальной клетке содержится около 10 тыс. этих минифабрик, составляющих до 30% общей сухой массы клетки! В клетках высших организмов рибосом содержится меньше — их число зависит от типа ткани и уровня метаболизма клетки.

Рибосома синтезирует белок со средней скоростью 10—20 аминокислот в секунду. Точность трансляции исключительно высока — ошибочное включение «неправильного» аминокислотного остатка в цепь белка составляет в среднем одну аминокислоту на 3 тыс. звеньев (при средней длине белковой цепи у человека в 500 аминокислотных остатков), т. е. всего одна ошибка на шесть белков.

О генетическом коде

Программа, задающая последовательность аминокислотных остатков в белке, записана в геноме клетки: около полувека назад было установлено, что аминокислотные последовательности всех белков непосредственно закодированы в ДНК с помощью так называемого генетического кода.

Согласно этому коду, универсальному для всех живых организмов, каждой из двадцати существующих аминокислот соответствует свой кодон — тройка нуклеотидов, представляющих собой элементарные единицы цепочки ДНК. Любой белок закодирован в ДНК определенной последовательностью кодонов.

Эта последовательность называется геном.

Одна клетка может содержать до 10 тыс. рибосом — белковых минифабрик, составляющих до 30% сухой клеточной массы

Как же эта генетическая информация доходит до рибосомы? На отдельном гене, как на матрице, синтезируется цепь еще одной информационной молекулы — рибонуклеиновой кислоты (РНК). Этот процесс копирования гена, называемый транскрипцией, осуществляется специальными ферментами — РНК-полимеразами.

Но РНК, полученная таким образом, еще не является матрицей для синтеза белка: из нее, вырезаются определенные «некодирующие» куски нуклеотидной последовательности (процесс сплайсинга).

Точность белкового синтеза рибосомой исключительно высока — у человека ошибка составляет один на три тысячи «неправильный» аминокислотный остаток

В результате получается матричная РНК (мРНК), которая и используется рибосомами в качестве программы для синтеза белка. Сам синтез, т.е. перевод генетической информации с языка нуклеотидной последовательности мРНК на язык аминокислотной последовательности белка, называется трансляцией.

Декодирование и синтез

В клетках эукариот одну мРНК обычно транслирует сразу множе­ство рибосом, образуя так называемые полисомы, которые можно отчетливо видеть с помощью электронной микроскопии, позволяющей получать увеличение в десятки тысяч раз.

Как поступают в рибосому аминокислоты, являющиеся строитель­ными кирпичиками для синтеза белка? Еще в 50-х годах прошлого столетия были открыты особые «перевозчики», доставляющие аминокислоты в рибосому, — короткие (длиной менее 80 нуклеотидов) транспортные РНК (тРНК). Специальный фермент присоединяет аминокислоту к одному из концов тРНК, причем каждой аминокислоте соответствует строго определенная тРНК. Синтез белка на рибосоме включает три основные стадии: начало, удлинение полипептидной цепи и окончание.

Сама рибосома — одна из самых сложно организованных молекулярных машин клетки — состоит из двух неравных частей, так называемых субчастиц (малой и большой).

Ее можно легко разделить на части центрифугированием при сверхвысоких скоростях в специальных пробирках с раствором сахарозы, концентрация которой увеличивается сверху вниз.

Поскольку малая субчастица в два раза легче большой, они движутся от верха пробирки к дну с разными скоростями.

Малая субчастица отвечает за декодирование генетической информации. Она состоит из высокомолекулярной рибосомной РНК (рРНК) и нескольких десятков белков (около 20 у прокариот и более 30 — у эукариот).

В раковых клетках резко повышается уровень некоторых рибосомных белков. Возможная причина — сбои в механизмах авторегуляции их производства

Большая субчастица, ответст­венная за образование пептидной связи между аминокислотными остатками, состоит из нескольких рРНК: одной высокомолекулярной и одной (или двух в случае эукариот) низкомолекулярной, а также нескольких десятков белков (более 30 у прокариот и до 50 у эукариот). О масштабе деятельности рибосом можно судить хотя бы по тому факту, что рибосомная РНК составляет около 80 % всей РНК клетки, тРНК, транспортирующая аминокислоты, — около 15 %, тогда как матричная РНК, несущая информацию о белковой последовательности, — лишь 5 %!

Нужно отметить, что рибосомные белки наделены множеством других, дополнительных функций, которые могут проявляться на разных этапах жизнедеятельности клетки.

Например, рибосомный белок S3 человека — один из ключевых белков центра связывания мРНК на рибосоме — принимает также участие в «ремонте» повреждений в ДНК (Kim et al.

, 1995), участвует в апоптозе (запрограммированной гибели клетки) (Jung et al., 2004), а также защищает от разрушения белок теплового шока (Kim et al., 2006).

Кроме того, чересчур интенсивный синтез некоторых рибосомных белков может свидетельствовать о развитии злокачественной трансформации клетки. Например, значительное повышение уровня пяти рибосомных белков было обнаружено в опухолевых клетках толстого кишечника (Zhang et al., 1999).

Недавно сотрудниками лаборатории структуры и функции рибосом ИХБФМ СО РАН был открыт новый механизм авторегуляции биосинтеза рибосомных белков у человека, основанный на принципе обратной связи. Не­управляемый синтез рибосомных белков, характерный для опухолевых клеток, вероятно, вызван сбоями именно в этом механизме.

Дальнейшие исследования в этой области представляют особый инте¬рес не только для ученых, но и для медиков.

Работает как «рибозим»

Удивительно, но, несмотря на миллиарды лет эволюции, разделяющие бактерии и человека, вторичная структура рибосомальных РНК у них мало различается.

О том, как уложена рРНК в субчастицах и каким образом она взаимодействует с рибосомными белками, до недавнего времени было известно не много.

Революционный сдвиг в понимании устройства рибосомы на молекулярном уровне произошел на рубеже нового тысячелетия, когда с помощью рентгеноструктурного анализа удалось расшифровать на уровне отдельных атомов структуру рибосом простейших организмов и их модельных комплексов с мРНК и тРНК. Это позволило понять молекулярные механизмы декодирования генетической информации и образования связей в молекуле белка.

Оказалось, что оба важнейших функциональных центра рибосомы — как декодирующий на малой субчастице, так и отвечающий за синтез белковой цепочки на большой субчастице — сформированы не белками, а рибосомной РНК. То есть, рибосома работает подобно рибозимам — необычным ферментам, состоящим не из белков, а из РНК.

Рибосомные белки, тем не менее, также играют важную роль в работе рибосомы. В отсутствие этих белков рибосомные РНК совершенно неспособны ни декодировать генетическую информацию, ни катализировать образование пеп­тидных связей.

Белки обеспечивают необходимую для работы рибосомы сложную «укладку» рРНК в функциональных центрах, служат «передатчиками» изменений пространственной структуры рибосомы, необходимых в процессе работы, а также связывают различные молекулы, влияющие на скорость и точность процесса белкового синтеза.

Сама рабочая схема белкового цикла в принципе одинакова для рибосом всех живых существ. Однако до сих пор неизвестно, до какой степени схожи молекулярные механизмы работы рибосом у разных организмов. Особенно не хватает информации об устройстве функциональных центров рибосом высших организмов, которые изучены гораздо хуже, чем рибосомы простейших.

Это связано с тем, что многие из методов, успешно использованных для исследования рибосом прокариот, оказались для эукариот неприменимыми. Так, из рибосом высших организмов не удается получить кристаллы, пригодные для рентгеноструктурного анализа, а их субчастицы невозможно «собрать» в пробирке из смеси рибосомных белков и рРНК, как это делается у простейших.

От низших — к высшим

И все-таки способы получения сведений о строении функциональных центров рибосом высших организмов существуют. Одним из таких методов является метод химического аффинного сшивания, разработанный 35 лет назад в отделе биохимии НИОХ СО АН СССР (ныне ИХБФМ СО РАН) под руководством академика Д. Г. Кнорре.

Метод основан на использовании коротких синтетических мРНК, несущих в выбранном положении химически активные («сшивающие») группы, которые в нужный момент можно активировать (например, облучая мягким ультрафиолетовым светом).

Метод аффинного химического сшивания был разработан 35 лет назад в отделе биохимии НИОХ СО АН СССР (ныне ИХБФМ СО РАН) под руководством академика Д. Г. Кнорре.До появления рентгеноструктурного анализа рибосом он использовался во всем мире для изучения рибосом у прокариот.
Этот метод и сегодня является основным для изучения структурно-функциональной организации рибосом высших организмов

Достоинство этого метода в том, что сшивающую группу можно присоединить практически к любому нуклеотидному остатку мРНК и в результате получить детальную информацию о его окружении на рибосоме.

Используя набор коротких мРНК с разным расположе­нием сшивающей группы, нам удалось определить рибосомные белки и нуклеотиды рРНК рибосомы человека, образующие канал для считывания генетической инфор­мации в процессе трансляции.

Впервые экспериментально удалось показать, что все нуклеотиды рРНК малой рибосомной частицы человека, соседствующие с кодонами мРНК, расположены в консервативных районах вторичной структуры молекулы рРНК.

Более того, их расположение совпадает с положением соответствующих нуклеотидов во вторичной структуре рРНК рибосом низших организмов.

Это позволило сделать вывод, что эта часть рибосомной РНК малой субчастицы составляет эволюционно консервативный «кор» (сердцевину) рибосомы, структурно идентичный у всех организмов.

С другой стороны, в устройстве мРНК-связывающего канала рибосом у человека и низших организмов обнаружен ряд принципиальных различий. Оказалось, что у высших организмов рибосомные белки играют намного большую роль в формировании этого канала, чем у прокариот, кроме того, в этом участвуют также белки, не имеющие «двойников» (гомологов) у низших организмов.

Почему же, несмотря на то, что функция рибосомы практически не изменилась в процессе эволюции, в организации декодирующего центра рибосом у высших организ­мов появились специфичные черты? Вероятно, это связано с более сложной и многостадийной регуляцией белкового синтеза у эукариот по сравнению с прокариотами, в ходе которой рибосомные белки мРНК-связывающего канала могут взаимодействовать не только с мРНК, но и с различными факторами, влияющими на эффективность и точность трансляции. Так ли это, покажут дальнейшие исследования.

: 11 Ноя 2006 , Загадки “ржавой” ДНК , том 12, №6

Источник: https://scfh.ru/papers/ribosoma-minifabrika-po-proizvodstvu-belkov/

Где синтезируется рРНК. Рибосомные рибонуклеиновые кислоты рРНК: характеристика, строение и описание

На рибосомах синтезируется

Молекулярная биология занимается изучением строения и функций молекул органических веществ, входящих в состав живых клеток растений, животных и человека. Особое место среди них отводится группе соединений, названных нуклеиновыми (ядерными) кислотами.

Различают два вида: дезоксирибонуклеиновую кислоту (ДНК) и рибонуклеиновую. Последняя имеет несколько модификаций: и-РНК, т-РНК и р-РНК, различающихся своими функциями и местом локализации в клетке. Данная статья посвящена изучению следующих вопросов: где синтезируется рРНК в прокариотических и эукариотических клетках, каково её строение и значение.

Историческая справка

Первые научные упоминания о рибосомной кислоте можно найти в исследованиях Р. Вайнберга и Ш.

Пенмана в 60-х годах XX столетия, которые описали короткие полинуклеотидные молекулы, относящиеся к рибонуклеиновым кислотам, но отличающиеся пространственным строением и коэффициентом седиментации от информационных и транспортных РНК.

Чаще всего их молекулы находили в составе ядрышка, а также в клеточных органеллах – рибосомах, отвечающих за синтез клеточного белка. Их назвали рибосомными (рибосомные рибонуклеиновые кислоты).

Характеристика РНК

Рибонуклеиновая кислота, как и ДНК, представляет собой полимер, мономерами которого являются нуклеотиды 4-х видов: адениновый, гуаниновый, урациловый и цитидиновый, соединенные фосфодиэфирными связями в длинные одноцепочные молекулы, закрученные в виде спирали или имеющие более сложные конформации. Существуют и двухцепочные рибосомные рибонуклеиновые кислоты, встречающиеся у РНК-содержащих вирусов и дублирующие функции ДНК: сохранение и передачу наследственных признаков.

Три вида кислот встречаются в клетке наиболее часто, это: матричная, или информационная, РНК, транспортная рибосомная рибонуклеиновая кислота, к которой присоединяются аминокислоты, а также рибосомальная кислота, находящаяся в ядрышке и клеточной цитоплазме.

Рибосомная РНК составляет около 80% от общего количества рибонуклеиновых кислот в клетке и 60% массы рибосомы – органоида, синтезирующего клеточный белок.

Все вышеперечисленные виды синтезируются (транскрибируются) на определенных участках ДНК, названных РНК-генами. В процессе синтеза задействованы молекулы специального фермента – РНК-полимеразы.

Место в клетке, где синтезируется рРНК, – это ядрышко, располагающееся в кариоплазме ядра.

Ядрышко, его роль в синтезе

В жизни клетки, называемой клеточным циклом, различают период между ее делениями – интерфазу. В это время в клеточном ядре хорошо видны плотные тельца зернистой структуры, называемые ядрышками и являющиеся обязательным компонентом как растительной, так и животной клетки.

В молекулярной биологии было установлено, что ядрышки являются теми органеллами, где синтезируется рРНК. Дальнейшие исследования цитологов привели к открытию участков клеточной ДНК, в которой были обнаружены гены, ответственные за строение и синтез рибосомных кислот. Их назвали ядрышковым организатором.

Ядрышковый организатор

До 60-х годов XX столетия в биологии бытовало мнение о том, что ядрышковый организатор, находящийся на месте вторичной перетяжки в 13, 14, 15, 21 и 22-й парах хромосом, имеет вид единичного участка.

Ученые, занимающиеся изучением хромосомных повреждений, называемых абберациями, установили, что в момент разрыва хромосомы на участке вторичной перетяжки происходит формирование ядрышек на каждой из ее частей.

Таким образом, можно утверждать следующее: ядрышковый организатор состоит не из одного, а из нескольких локусов (генов), отвечающих за формирование ядрышка. Именно в нем синтезируются рибосомные рибонуклеиновые кислоты рРНК, образующие субъединицы белоксинтезирующих органелл клетки – рибосом.

Что такое рибосомы?

Как уже было сказано ранее, все три основных вида РНК существуют в клетке, где они синтезируются на определенных участках – генах ДНК.

Образовавшиеся в результате транскрипции рибосомные РНК формируют комплексы с белками – рибонуклеопротеиды, из которых образуются составные части будущей органеллы, так называемые субъединицы.

Через поры в ядерной мембране они переходят в цитоплазму и формируют в ней объединённые структуры, включающее в себя еще и молекулы и-РНК и т-РНК, называемые полисомами.

Сами рибосомы могут разделяться под действием ионов кальция и существовать отдельно в виде субъединиц. Обратный же процесс происходит в компартментах клеточной цитоплазмы, где протекают процессы трансляции – сборки молекул клеточных белков.

Чем активнее клетка, чем интенсивнее в ней протекают процессы обмена веществ, тем больше рибосом она содержит.

Например, клетки красного костного мозга, гепатоциты позвоночных животных и человека характеризуются большим количеством этих органелл в цитоплазме.

Как кодируются гены р-РНК?

Исходя из вышесказанного, строение, виды и функционирование генов рРНК зависят от ядрышковых организаторов. В них располагаются локусы, содержащие гены, кодирующие рибосомную РНК. О. Миллер, проводя исследования овогенеза в клетках тритонов, установил механизм функционирование этих генов.

С них синтезировались копии р-РНК (так называемые первичные транскриптанты), содержащие около 13х103 нуклеотидов и имеющие коэффициент седиментации 45 S. Затем эта цепь проходила процесс созревания, заканчивающийся образованием трех молекул р-РНК с коэффициентами седиментации 5,8 S, 28 S и 18 S.

Механизм образования р-РНК

Возвратимся к опытам Миллера, который исследовал синтез рибосомных РНК и доказал, что ядрышковое ДНК служит шаблоном (матрицей) для образования р-РНК – транскриптанта.

Он же установил, что от количества молекул фермента РНК полимеразы зависит численность незрелых рибосомальных кислот (пре-р-РНК), которые образуются.

Затем происходит их созревание (процессинг), и молекулы р-РНК начинают тут же связываться с пептидами, в результате образуется рибонуклеопротеид – строительный материал рибосомы.

Особенности рибосомных кислот эукариотических клеток

Имея единые принципы строения и общие функциональные механизмы, рибосомы прокариотических и ядерных организмов все же имеют цитомолекулярные различия. Чтобы их выяснить, ученые применили метод исследования, называемый рентгеноструктурным анализом.

Было выяснено, что величина эукариотической рибосомы, а значит, и р-РНК, входящих в неё, больше и коэффициент седиментации равен 80 S. Органелла, теряя ионы магния, может разделяться на две субъединицы с показателями 60 S и 40 S.

Малая частица содержит одну молекулу кислоты, а большая – три, то есть ядерные клетки содержат рибосомы, состоящие из 4-х полинуклеотидных спиралей кислоты следующих характеристик: 28 S РНК – 5 тыс. нуклеотидов, 18 S – 2 тыс. 5 S – 120 нуклеотидов, 5,8 S – 160.

Участок, где синтезируется рРНК в эукариотических клетках – это ядрышко, расположенное в кариоплазме ядра.

Рибосомные РНК прокариот

В отличие от р-РНК, входящих в ядерные клетки, рибосомальные рибонуклеиновые кислоты бактерий транскрибируются на уплотненном участке цитоплазмы, содержащем ДНК и называемым нуклеоидом. Он содержит рРНК гены.

Транскрипция, общая характеристика которой может быть представлена в виде процесса переписывания информации с р-РНК генов ДНК в последовательность нуклеотидов рибосомной рибонуклеиновой кислоты с учетом правила комплементарности генетического кода: адениновый нуклеоитид соответствует урациловому, а гуаниновый – цитозиновому.

Р-РНК бактерии имеют меньшую молекулярную массу и более мелкие размеры, чем у ядерных клеток. Их коэффициент седиментации 70 S, а две субъединицы имеют показатели 50 S и 30 S. Меньшая частица содержит одну молекулу р-РНК, а большая – две.

Роль рибонуклеиновой кислоты в процессе трансляции

Главной функцией р-РНК является обеспечение процесса биосинтеза клеточного белка – трансляции. Она осуществляется только при наличии рибосом, содержащих р-РНК. Объединяясь в группы, они связываются с молекулой информационной ДНК, образуя полисому.

К ней из цитоплазмы клетки подходят молекулы транспортной рибосомной рибонуклеиновой кислоты, несущие аминокислоты, которые, попав в полисому, связываются между собой пептидными связями, образуя полимер – белок.

Он является важнейшим органическим соединением клетки, выполняющим множество важнейших функций: строительную, транспортную, энергетическую, ферментативную, защитную и сигнальную.

В данной статье были рассмотрены характеристика, строение и описание рибосомных нуклеиновых кислот, являющихся органическими биополимерами клеток растений, животных и человека.

Источник: https://FB.ru/article/245381/gde-sinteziruetsya-rrnk-ribosomnyie-ribonukleinovyie-kislotyi-rrnk-harakteristika-stroenie-i-opisanie

Транскрипция и трансляция

На рибосомах синтезируется

И транскрипция, и трансляция относятся к матричным биосинтезам. Матричным биосинтезом называется синтез биополимеров (нуклеиновых кислот, белков) на матрице – нуклеиновой кислоте ДНК или РНК. Процессы матричного биосинтеза относятся к пластическому обмену: клетка расходует энергию АТФ.

Матричный синтез можно представить как создание копии исходной информации на несколько другом или новом “генетическом языке”. Скоро вы все поймете – мы научимся достраивать по одной цепи ДНК другую, переводить РНК в ДНК и наоборот, синтезировать белок с иРНК на рибосоме. В данной статье вас ждут подробные примеры решения задач, генетический словарик пригодится – перерисуйте его себе :)

Возьмем 3 абстрактных нуклеотида ДНК (триплет) – АТЦ. На иРНК этим нуклеотидам будут соответствовать – УАГ (кодон иРНК). тРНК, комплементарная иРНК, будет иметь запись – АУЦ (антикодон тРНК). Три нуклеотида в зависимости от своего расположения будут называться по-разному: триплет, кодон и антикодон. Обратите на это особое внимание.

Репликация ДНК – удвоение, дупликация (лат. replicatio — возобновление, лат. duplicatio – удвоение)

Процесс синтеза дочерней молекулы ДНК по матрице родительской ДНК. Нуклеотиды достраивает фермент ДНК-полимераза по принципу комплементарности. Переводя действия данного фермента на наш язык, он следует следующему правилу: А (аденин) переводит в Т (тимин), Г (гуанин) – в Ц (цитозин).

Удвоение ДНК происходит в синтетическом периоде интерфазы. При этом общее число хромосом не меняется, однако каждая из них содержит к началу деления две молекулы ДНК: это необходимо для равномерного распределения генетического материала между дочерними клетками.

Транскрпиция (лат. transcriptio — переписывание)

Транскрипция представляет собой синтез информационной РНК (иРНК) по матрице ДНК. Несомненно, транскрипция происходит в соответствии с принципом комплементарности азотистых оснований: А – У, Т – А, Г – Ц, Ц – Г (загляните в “генетический словарик” выше).

До начала непосредственно транскрипции происходит подготовительный этап: фермент РНК-полимераза узнает особый участок молекулы ДНК – промотор и связывается с ним. После связывания с промотором происходит раскручивание молекулы ДНК, состоящей из двух цепей: транскрибируемой и смысловой. В процессе транскрипции принимает участие только транскрибируемая цепь ДНК.

Транскрипция осуществляется в несколько этапов:

  • Инициация (лат. injicere — вызывать)
  • Образуется несколько начальных кодонов иРНК.

  • Элонгация (лат. elongare — удлинять)
  • Нити ДНК последовательно расплетаются, освобождая место для передвигающейся РНК-полимеразы. Молекула иРНК быстро растет.

  • Терминация (лат. terminalis — заключительный)
  • Достигая особого участка цепи ДНК – терминатора, РНК-полимераза получает сигнал к прекращению синтеза иРНК. Транскрипция завершается. Синтезированная иРНК направляется из ядра в цитоплазму.

Трансляция (от лат. translatio — перенос, перемещение)

Куда же отправляется новосинтезированная иРНК в процессе транскрипции? На следующую ступень – в процесс трансляции. Он заключается в синтезе белка на рибосоме по матрице иРНК. Последовательность кодонов иРНК переводится в последовательность аминокислот.

Перед процессом трансляции происходит подготовительный этап, на котором аминокислоты присоединяются к соответствующим молекулам тРНК.

Трансляцию можно разделить на несколько стадий:

  • Инициация
  • Информационная РНК (иРНК, синоним – мРНК (матричная РНК)) присоединяется к рибосоме, состоящей из двух субъединиц.

    Замечу, что вне процесса трансляции субъединицы рибосом находятся в разобранном состоянии.

    Первый кодон иРНК, старт-кодон, АУГ оказывается в центре рибосомы, после чего тРНК приносит аминокислоту, соответствующую кодону АУГ – метионин.

  • Элонгация
  • Рибосома делает шаг, и иРНК продвигается на один кодон: такое в фазу элонгации происходит десятки тысяч раз. Молекулы тРНК приносят новые аминокислоты, соответствующие кодонам иРНК. Аминокислоты соединяются друг с другом: между ними образуются пептидные связи, молекула белка растет.

    Доставка нужных аминокислот осуществляется благодаря точному соответствию 3 нуклеотидов (кодона) иРНК 3 нуклеотидам (антикодону) тРНК. Язык перевода между иРНК и тРНК выглядит как: А (аденин) – У (урацил), Г (гуанин) – Ц (цитозин). В основе этого также лежит принцип комплементарности.

    Движение рибосомы вдоль молекулы иРНК называется транслокация. Нередко в клетке множество рибосом садятся на одну молекулу иРНК одновременно – образующаяся при этом структура называется полирибосома (полисома). В результате происходит одновременный синтез множества одинаковых белков.

  • Терминация
  • Синтез белка – полипептидной цепи из аминокислот – в определенный момент завершатся. Сигналом к этому служит попадание в центр рибосомы одного из так называемых стоп-кодонов: УАГ, УГА, УАА. Они относятся к нонсенс-кодонам (бессмысленным), которые не кодируют ни одну аминокислоту. Их функция – завершить синтез белка.

Существует специальная таблица для перевода кодонов иРНК в аминокислоты. Пользоваться ей очень просто, если вы запомните, что кодон состоит из 3 нуклеотидов. Первый нуклеотид берется из левого вертикального столбика, второй – из верхнего горизонтального, третий – из правого вертикального столбика. На пересечении всех линий, идущих от них, и находится нужная вам аминокислота :)

Давайте потренируемся: кодону ЦАЦ соответствует аминокислота Гис, кодону ЦАА – Глн. Попробуйте самостоятельно найти аминокислоты, которые кодируют кодоны ГЦУ, ААА, УАА.

Кодону ГЦУ соответствует аминокислота – Ала, ААА – Лиз. Напротив кодона УАА в таблице вы должны были обнаружить прочерк: это один из трех нонсенс-кодонов, завершающих синтез белка.

Примеры решения задачи №1

Без практики теория мертва, так что скорее решим задачи! В первых двух задачах будем пользоваться таблицей генетического кода (по иРНК), приведенной вверху.

“Фрагмент цепи ДНК имеет следующую последовательность нуклеотидов: ЦГА-ТГГ-ТЦЦ-ГАЦ. Определите последовательность нуклеотидов во второй цепочке ДНК, последовательность нуклеотидов на иРНК, антикодоны соответствующих тРНК и аминокислотную последовательность соответствующего фрагмента молекулы белка, используя таблицу генетического кода”

Объяснение:

По принципу комплементарности мы нашли вторую цепочку ДНК: ГЦТ-АЦЦ-АГГ-ЦТГ. Мы использовали следующие правила при нахождении второй нити ДНК: А-Т, Т-А, Г-Ц, Ц-Г.

Вернемся к первой цепочке, и именно от нее пойдем к иРНК: ГЦУ-АЦЦ-АГГ-ЦУГ. Мы использовали следующие правила при переводе ДНК в иРНК: А-У, Т-А, Г-Ц, Ц-Г.

Зная последовательность нуклеотидов иРНК, легко найдем тРНК: ЦГА, УГГ, УЦЦ, ГАЦ. Мы использовали следующие правила перевода иРНК в тРНК: А-У, У-А, Г-Ц, Ц-Г. Обратите внимание, что антикодоны тРНК мы разделяем запятыми, в отличие кодонов иРНК. Это связано с тем, что тРНК представляют собой отдельные молекулы (в виде клеверного листа), а не линейную структуру (как ДНК, иРНК).

Пример решения задачи №2

“Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов: ТАГ-ЦАА-АЦГ-ГЦТ-АЦЦ.

Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону тРНК”

Обратите свое пристальное внимание на слова “Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой синтезируется участок центральной петли тРНК “. Эта фраза кардинально меняет ход решения задачи: мы получаем право напрямую и сразу синтезировать с ДНК фрагмент тРНК – другой подход здесь будет считаться ошибкой.

Итак, синтезируем напрямую с ДНК фрагмент молекулы тРНК: АУЦ-ГУУ-УГЦ-ЦГА-УГГ. Это не отдельные молекулы тРНК (как было в предыдущей задаче), поэтому не следует разделять их запятой – мы записываем их линейно через тире.

Третий триплет ДНК – АЦГ соответствует антикодону тРНК – УГЦ. Однако мы пользуемся таблицей генетического кода по иРНК, так что переведем антикодон тРНК – УГЦ в кодон иРНК – АЦГ. Теперь очевидно, что аминокислота кодируемая АЦГ – Тре.

Пример решения задачи №3

Длина фрагмента молекулы ДНК составляет 150 нуклеотидов. Найдите число триплетов ДНК, кодонов иРНК, антикодонов тРНК и аминокислот, соответствующих данному фрагменту. Известно, что аденин составляет 20% в данном фрагменте (двухцепочечной молекуле ДНК), найдите содержание в процентах остальных нуклеотидов.

Один триплет ДНК состоит из 3 нуклеотидов, следовательно, 150 нуклеотидов составляют 50 триплетов ДНК (150 / 3). Каждый триплет ДНК соответствует одному кодону иРНК, который в свою очередь соответствует одному антикодону тРНК – так что их тоже по 50.

По правилу Чаргаффа: количество аденина = количеству тимина, цитозина = гуанина. Аденина 20%, значит и тимина также 20%. 100% – (20%+20%) = 60% – столько приходится на оставшиеся цитозин и гуанин. Поскольку их процент содержания равен, то на каждый приходится по 30%.

Теперь мы украсили теорию практикой. Что может быть лучше при изучении новой темы? :)

Источник: https://studarium.ru/article/121

Медицина и здоровье
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: