Наличие клеточной стенки у растений

Клеточная стенка

Наличие клеточной стенки у растений

В отличие от животных и многих простейших, у растений, бактерий и грибов, почти все клетки имеют стенку, лежащую кнаружи от цитоплазматической мембраны и обладающую повышенной прочностью. Основная функция данной структуры — опора и защита.

Клеточные стенки (или клеточные оболочки) строятся из веществ, синтезируемых самими клетками. Их химический состав различен у растений, грибов и прокариот. Кроме того, даже у одного растения у различных клеток состав стенок несколько различен.

Клеточная стенка растений состоит в основном из целлюлозы. Целлюлоза — это полисахарид, мономером которого является глюкоза.

Основу бактериальных клеточных стенок составляет вещество муреин (относится к пептидогликанам). У грамположительных бактерий в состав оболочки входят различные кислоты, а сама оболочка плотно прилегает к цитоплазматической мембране.

У грамотрицательных бактерий оболочка более тонкая и не прилегает к мембране. Между мембраной и оболочкой образуется периплазматическое пространство.

Снаружи клеточная оболочка грамотрицательных прокариот окружена внешней мембраной, составленной из липополисахарида.

У грибов основным веществом клеточных стенок является хитин, а не целлюлоза.

Состав клеточной стенки растений

У растений стенка дочерних клеток образуется уже во время деления родительской. Впоследствии она называется первичной. У многих клеток позже образуется вторичная оболочка.

Первичная клеточная оболочка состоит из микрофибрилл целлюлозы, погруженных в матрикс из других полисахаридов. Отличительной особенностью волокон целлюлозы является их прочность.

Молекула целлюлозы представляет собой длинную полисахаридную цепь. Отдельные молекулы соединяются друг с другом водородными связями в пучок, который называется микрофибриллой.

Такие фибриллы образуют каркас клеточной стенки.

Матрикс клеточной стенки составляют полисахариды пектины и гемицеллюлозы, а также ряд других веществ (например, белков). Пектиновые вещества представляют собой группу кислых полисахаридов, их молекулы могут быть не только линейными, но и разветвленными. Гемицеллюлозы также смешанная группа полисахаридов. Длина их линейных молекул короче, чем у целлюлозы.

Оболочки соседних клеток растений соединены между собой срединной пластинкой, состоящих из пектатов магния и кальция, для которых характерна клейкость.

В состав стенок растений входит вода (составляет более половины массы), обуславливая ряд физических и химических свойств полисахаридов.

Жесткий каркас растения во многих местах пронизан каналами (плазмодесмами), по которым цитоплазма одной клетки соединяется с цитоплазмой соседних.

Клетки мезофилла листа (а также некоторые другие) на протяжении всей своей жизни имеют только первичную стенку. У большинства же клеток на первичную оболочку с внутренней стороны отлагается вторичная стенка, составленная из дополнительных слоев целлюлозы. Обычно в это время клетка уже дифференцирована и не растет (исключение составляют, например, клетки колленхимы).

В каждом отдельном слое вторичного утолщения микрофибриллы целлюлозы располагаются под одним углом (параллельно друг другу). Однако разные слои имеют разный угол, что обеспечивает большую прочность.

Часть клеток растений одревесневают (трахеальные элементы ксилемы, склеренхима и др.). В основе этого процесса лежит интенсивная лигнификация стенок (в небольших количествах лигнин есть во всех оболочках).

Лигнин не является полисахаридом, а представляет собой сложное полимерное вещество. Отложения лигнина могут иметь различную форму (сплошную, кольцевую, спиральную, сетчатую). Он скрепляет целлюлозу, не дает ей смещаться.

Лигнин не только обеспечивает прочность, но и дает дополнительную защиту от неблагоприятных физических и химических факторов.

Функции клеточной стенки

Оболочки разных клеток совместно обеспечивают всему растению и его отдельным частям механическую прочность и опору. Это функция клеточной стенки аналогична одной из функций скелета животных. Однако она не единственная.

Жесткость стенок препятствует растяжению клеток и их разрыву. В результате по физическим законам в клетки может путем осмоса поступать вода. Для травянистых растений тургоцентричность клеток является единственной их опорой.

Микрофибриллы целлюлозы ограничивают рост клеток и определяют их форму. Если микрофибриллы окольцовывают клетку, то она будет расти в длину (поперек направления волокон).

Связанные клеточные стенки образуют апопласт, по которому передвигается вода и минеральные вещества. Плазмодесмы связывают содержимое разных клеток в единую систему — симпласт.

Стенки сосудов ксилемы, трахеид, ситовидных трубок выполняют транспортную функцию.

Наружные клеточные стенки эпидермальных клеток покрыты воском (кутикулой). С одной стороны, он препятствует испарению воды, с другой – проникновению вредных микроорганизмов.

У некоторых растений в определенных клетках оболочки видоизменяются и служат местом запаса питательных веществ.

plustilino © 2019. All Rights Reserved

Источник: https://biology.su/cytology/cell-wall

Особенности строения растительных клеток – Биология

Наличие клеточной стенки у растений

Растения, как и все живые организмы, имеют клеточное строение. Они могут быть одноклеточными, колониальными и многоклеточными. Клетка одноклеточного растения представляет собой  целый организм и  выполняет все функции, необходимые для обеспечения жизнедеятельности.

Чаще всего оно имеет форму близкую к шаровидной или яйцевидной. Клетки многоклеточных растений очень разнообразны. Они отличаются друг от друга формой, строением, размерами. Это связано с тем, что в многоклеточном организме клетки выполняют различные функции.

Многообразие растительных клеток возникает в результате дифференциации однородных клеток зародыша. Размеры клеток большинства растений колеблются в переделах 10-1000 мкм. Форма клеток многоклеточных организмов может быть округлой, эллипсовидной, кубической, цилиндрической, звездчатой и т.д.

Все многообразие форм прастительных клеток можно свести к двум основным типам:

·         паренхимные клетки — клетки, имеющие форму изодиаметрического многогранника, то есть их размеры во всех трех измерениях приблизительно одинаковы;

·         прозенхимные клетки — сильно вытянутые клетки, длина которых превышает их ширину и толщину в 5 и более раз (например, волокна льна имеют длину 0,2-4 см, а толщина не превышает 100мкм.

Несмотря на разнообразие, клетки растений имеют общий план строения. Растительная клетка имеет все органоиды, свойственные другим эукариотическим организмам (животные, грибы): ядро, эндоплазматическая сеть, рибосомы, митохондрии, аппарат Гольджи и т.д. Вместе с тем, она отличается от них наличием:

·         прочной клеточной стенки;

·         пластид;

·         развитой системы постоянно существующих вакуолей.

Кроме того, в клетках большинства высших растений отсутствует клеточный центр с центриолями.

Общий план строения эукариотической клетки рассматривается в разделе “Общая биология” В этой главе мы остановимся только на отличительных особенностях строения растительной клетки.

 Клеточная стенка

Растительная клетка, как и животная, окружена цитоплазматической мембраной, поверх которой располагается, как правило, толстая клеточная стенка, отсутствующая у животных клеток.

Основным компонентом клеточной стенки является целлюлоза (клетчатка). Молекулы целлюлозы собраны в пучки — фибриллы, образующие каркас клеточной стенки.

Промежутки между фибриллами заполнены матриксом, в состав которого входят другие полисахариды — гемицеллюлозы, пектины и гликопротеины.

Помимо полисахаридов, в клеточной стенке можно обнаружить и неуглеводные компоненты — лигнин, воска, кутин и суберин.

Функции клеточной стенки:

·         придает клетке определенную форму и прочность;

·         защищает живое содержимое клетки;

·         играет определенную роль в поглощении, транспорте и выделении веществ;

·         служит местом накопления некоторых запасных веществ.

Плазмодесмы

Плазмодесмы — цитоплазматические тяжи, соединяющие содержимое соседних клеток. Они проходят через клеточную стенку.

Плазмодесмы представляют собой узкие каналы, выстланные плазматической мембраной. В нем располагается десмотрубочка — цилиндрическая трубочка меньшего диаметра, сообщающаяся с ЭПР обеих соседних клеток. Чаще всего плазмодесмы формируются во время клеточного деления.

Пластиды

Двумембранные органеллы, характерные для растительных клеток. Совокупность всех пластид клетки называется пластидом.

Образование пластид происходит из пропластид — мелких телец, находящихся в меристематических клетках корней и побегов. По форме пропластиды напоминают митохондрии, отличаясь лишь большими размерами.

Снаружи они покрыты двойной цитоплазматической мембраной. В пластидах различают более или менее развитую мембранную систему (часто это одиночные тилакоиды, расположенные без определенной ориентации; иногда — трубочки или пузырьки) и внутреннее содержимое, представленное гомогенным веществом — строму.

Различают три основных типа пластид:

·         лейкопласты — бесцветные пластиды в клетках неокрашенных частей растений;

·         хромопласты — окрашенные пластиды обычно желтого, красного и оранжевого цвета;

·         хлоропласты — зеленые пластиды.

Поскольку пластиды имеют общее происхождение, между ними возможны взаимопревращения.

Наиболее часто происходит превращение лейкопластов в хлоропласты (позеленение клубней картофеля на свету) обратный процесс происходит в темноте.

При пожелтении листьев и покраснении плодов хлоропласты превращаются в хромопласты. Считают невозможным только превращение хромопластов в лейкопласты или хлоропласты.

Хлоропласты

Основная функция хлоропластов — фотосинтез, т.е. в хлоропластах на свету осуществляется синтез органических веществ из неорганических за счет преобразования солнечной энергии в энергию молекул АТФ.

Хлоропласты высших растений имеют размеры 5-10 мкм и по форме напоминают двояковыпуклую линзу. Хлоропласты — двумембранные органоиды (рис. 2). Наружная мембрана гладкая, а внутренняя имеет складчатую структуру.

В результате образования выпячиваний внутренней мембраны, возникает система основных структурных элементов хлоропласта — тилакоидов. Различают:

·         тилакоиды гран, имеющие вид уплощенных мешочков, уложенных в стопки — граны;

·         тилакоиды стромы, имеющие вид уплощенных канальцев и связывающие граны между собой.

Молекулы хлорофилла входят в состав мембран тилакоидов гран, где они собраны в группы — квантосомы. Тилакоиды гран связаны друг с другом таким образом, что их полости оказываются непрерывными.

В каждом хлоропласте находится в среднем 40-60 гран, расположенных в шахматном порядке. Этим обеспечивается максимальная освещенность каждой граны. Каждая грана содержит ферменты, участвующие в синтезе АТФ.

Внутренняя среда хлоропласта — строма — содержит ДНК и рибосомы, благодаря чему хлоропласт способен к автономному делению, как и митохондрии.

На рибосомах происходит синтез белков мембран тилакоидов (в том числе и ферментов, осуществляющих световые реакции фотосинтеза). Белки стромы и липиды мембран имеют внепластидное происхождение.

Среди белков стромы особое значение имеют белки-ферменты, синтезирующие органические вещества с использованием энергии АТФ.

Лейкопласты

Бесцветные, обычно мелкие пластиды. Встречаются в клетках органов, скрытых от солнечного света — корнях, корневищах, клубнях, семенах. Форма разнообразна — шаровидная, эллипсовидная, гантелевидная, чашевидная и т.д.

Тилакоиды развиты слабо. Имеют ДНК, рибосомы, а также ферменты, осуществляющие синтез и гидролиз запасных веществ. Основная функция — синтез и накопление запасных продуктов (в первую очередь крахмала, реже — белков и липидов).

Хромопласты

Встречаются в клетках лепестков многих растений, зрелых плодов, реже — корнеплодов, а также в осенних листьях. Содержат пигменты, относящиеся к группе каротиноидов, придающие им красную, желтую и оранжевую окраску. Внутренняя мембранная система отсутствует или представлена одиночными тилакоидами.

Значение в обмене веществ до конца не выяснено. По-видимому, большинство из них представляют собой стареющие пластиды. Косвенное биологическое значение состоит в том, что они обусловливают яркую окраску цветков и плодов, привлекающую насекомых-опылителей и других животных для распространения плодов.

Вакуоли

Вакуоли представляют собой полости, заполненные клеточным соком и отграниченные от цитоплазмы мембраной, которую называют тонопластом.

На долю вакуолей в растительной клетке приходится до 90% ее объема. Причем, вакуоли являются постоянными компонентами растительных клеток в отличие от животных, в которых могут возникать временные вакуоли.

Вакуоли развиваются из цистерн ЭПР. В их образовании принимает участие и аппарат Гольджи, в котором упаковываются продукты обмена веществ и затем в виде пузырьков транспортируются в вакуоль.

Молодые клетки, как правило, содержат большое количество мелких вакуолей, которые, постепенно сливаясь, образуют одну большую, занимающую практически всю полость клетки. При этом цитоплазма с органоидами и ядро оказываются оттесненными к цитоплазматической мембране, то есть занимают пристенное положение.

Клеточный сок, содержащийся в вакуолях, представляет собой слабоконцентрированный водный раствор органических и неорганических веществ, образующих истинные и коллоидные растворы.

В вакуолях происходит накопление как запасных веществ, так и конечных продуктов обмена веществ.

Кроме того, в вакуолях часто содержатся особые пигменты из группы антоцианов, придающие растительным клеткам голубую, фиолетовую, пурпурную, темно-красную и пунцовую окраску.

Функции вакуолей:

·         накапливают питательные вещества;

·         изолируют конечные продукты обмена веществ;

·         поддерживают тургорное давление;

·         регулируют водно-солевой обмен;

·         способствуют растяжению и росту клеток;

·         окрашивают определенные части растений, привлекая опылителей и распространителей плодов и семян;

·         могут выполнять функцию лизосом.

Источник: https://www.sites.google.com/site/biologia00004/osobennosti-stroenia-rastitelnyh-kletok

Клеточная стенка – строение, состав и основные функции

Наличие клеточной стенки у растений

Жесткий слой, окружающий клетки бактерий, архей, грибов и растений, называется клеточной стенкой. Стенка находится вне пределов цитоплазмической мембраны (клеточной мембраны) и выполняет целый ряд функций. У животных и большинства простейших клеточной стенки не наблюдается. 

В данной статье охарактеризована клеточная стенка (строение и функции), кратко для каждого вида клеток.

Клеточные стенки высших растений

Растительная клеточная оболочка, строение и функции которой здесь рассматриваются, имеет многослойную структуру. 

Это внешний слой (средняя пластинка), первичная клеточная стенка и вторичная клеточная стенка. Вторичная клеточная стенка имеется не у всех растений.

  1. Внешний слой, называемый средней пластинкой, содержит полисахариды — пектины, помогающие связывать стенки соседних клеток друг с другом.
  2. Первичная клеточная стенка размещается между средней пластинкой и плазматической мембраной и состоит из целлюлозных микрофибрилл, которые содержатся в матрице. Эта стенка обуславливает прочность, столь нужную при росте клеток.
  3. В некоторых видах растительных клеток между первичной клеточной стенкой и плазматической мембраной образуется еще один слой — вторичная клеточная стенка. Она очень крепкая и поддерживает клетку. Состоит из целлюлозы, гемицеллюлозы, лигнина (он усиливает клетки и обеспечивает водопроводимость).


Основная функция клеточной стенки состоит вформировании каркаса клетки ипредотвращении еерасширения. Кроме того, клеточная стенка:

  • обеспечивает механическую прочность структуры клетки;
  • контролирует направление роста клеток;
  • помогает выдерживать силу воздействия протопласта (содержимого клетки) на стенки — в результате растение остается прямостоящим;
  • регулирует рост клеток;
  • регулирует диффузию (клеточная стенка пропускает некоторые необходимые вещества, препятствуя проникновению других);
  • защищает клетку от воздействия опасных веществ и микроорганизмов;
  • предотвращает потерю влаги;
  • способствует взаимодействию клеток между собой;
  • сохраняет углеводы, используемые для роста растения.

Клеточные стенки водорослей

Как и клетки высших растений, клетки водорослей имеют соответствующие стенки. Они содержат целлюлозу и другие гликопротеины.

В клеточных стенках зеленых и некоторых видов красных водорослей встречаются манозиловые микроволокна. А в клеточных стенках бурых водорослей встречается альгиновая кислота. 

Агарозы, карагинан, порфиран, фурселеран и фуноран встречаются практически во всех видах водорослей. Группа диатомовых водорослей синтезирует свою клеточную стенку из кремнезема, что в какой-то мере способствует быстрому росту водорослей.

Клеточные стенки грибов


Клеточную стенку имеют невсе грибы. Клеточная стенка грибов состоит из углерода, хитина, глюкозамина. Функции стенки аналогичны функциям стенок растений. 

Грибная клеточная стенка меняет свой состав, свойства и форму по мере роста гриба.

Клеточные стенки бактерий

Бактериальные клеточные стенки, как и у растений, в первую очередь защищают ячейку отвнутреннего тургора. У прокариот клеточная стенка отличается составом основного компонента — он состоит из пептидогликана, размещающегося сразу за цитоплазматической мембраной.

Различают два вида бактериальных клеточных стенок, по этому признаку бактерии делятся на грамотрицательные и грамположительные.

Вграмположительных бактериях клеточная стенка имеет толстый слой пептидогликана. Такая стенка имеется у определенного типа организмов, в клетках которых формируется липотейхоевая кислота, благодаря наличию фосфодиестерных связей между мономерами которой клетка получает отрицательный электрический заряд.

Соответственно грамотрицательные бактерии имеют очень тонкий слой пептидогликана клеточной стенки и имеют вторую, внешнюю, мембрану, находящуюся снаружи от клеточной стенки и компонующую фосфолипиды и липополисахариды на своей внешней стороне.

Уважаемые читатели, хотелось бы знать была ли вам полезна информация, описывающая строение и функции клеточной оболочки, кратко, но емко характеризующая разные виды клеток.

Источник: https://nauka.club/biologiya/kletochnaya-stenka.html

Другие эукариоты

Оомицеты, патогены растений похожи на грибы, также имеют целлюлозные клеточные стенки. До недавнего времени за этот признак их относили к грибам, структурные и молекулярные свидетельства заставили отнести их к гетероконтив, как и бурые водоросли.

Грам-положительные бактерии

Грам-положительные бактерии характеризуется присутствием очень толстого слоя пептидогликана, который отвечает за содержание красителя кристал-виолет течение процедуры окрашивания по Граму.

Такая стенка находится исключительно в организмах, принадлежащих к типам Actinobacteria (или грамм-положительные организмы с высоким содержанием G + C) и Firmicutes (или грамм-положительные организмы с низким содержанием G + C).

Бактерии в пределах типа Deinococcus-Thermus также могут положительно краситься по Граму, но содержат некоторые структуры клеточной стенки, типичные от грамотрицательных организмов.

В клеточную стенку грамположительных бактерий встроенные полимерного спирты, тейхоевая кислота, некоторые из которых связываются с липидами, формируя липотейхоеву кислоту. Ци вещества отвечают за соединение пептидогликана с цитоплазматической мембраной. Тейхоевая кислота придает клетке отрицательный электрический заряд благодаря наличию фосфодиестерних связей между мономерами тейхоевая кислоты.

Грамотрицательные бактерии

В отличие от грамположительных бактерий, грамотрицательные бактерии содержат очень тонкий слой пептидогликана, отвечающий за неспособность клеточных стенок содержать краситель кристал-виолет течение процедуры окрашивания по Граму.

В дополнение к слою пептидогликанов, грамотрицательные бактерии имеют вторую, так называемую внешнюю мембрану, находится кнаружи от клеточной стенки и компонует фосфолипиды и липополисахариды на своей внешней стороне. Отрицательно заряженные липополисахариды также предоставляют клетке отрицательный электрический заряд.

Химическая структура липополисахаридив внешней мембраны часто уникальная для отдельных штаммов бактерий и часто отвечает за реакцию антигенов с представителями этих штаммов.

Как любой двойной слой фосфолипидов, внешняя мембрана достаточно непроницаема для всех заряженных молекул. Однако, белковые каналы (погрузится) присутствуют во внешней мембране, позволяют пассивный транспорт многих ионов, сахара и аминокислот через внешнюю мембрану.

Таким образом, эти молекулы присутствуют в периплазматическое, слое между внешней и цитоплазматической мембранами. Периплазматическое содержит слой пептидогликана и много белков, шо отвечают за гидролиз и прием внеклеточных сигналов. Читается, что перивлазма гелеобразная, а не жидкая, из-за высокого содержания белка и пептидогликана.

Сигналы и живильни вещества с периплазматическое попадают в цитоплазму клетки используя транспортные белки в цитоплизматичний мембране.

Клеточные стенки архей

Хотя они и не уникальны, клеточные стенки архей несколько отличаются от бактериальных. Например, клеточные стенки большинства архей образованные внешними слоями белков или S-слоем.

S-слоя распространенные в бактериях, где они служат единственным компонентом клеточной стенки в некоторых организмах (например в Planctomyces) или внешним слоем во многих организмах с пептидогликана.

За исключением одной группы метаногенов, археи не имеют пептидогликаннои стенки. Даже в данном случае, пептидогликаны очень отличается от типа, найденного в бактериях.

Источник: https://info-farm.ru/alphabet_index/k/kletochnaya-stenka.html

Зачем нужна клеточная стенка?

Клеточная стенка выполняет несколько функций, включая поддержание структуры и формы клетки. Стена жесткая, поэтому она защищает клетку и ее содержимое.

Например, клеточная стенка может препятствовать проникновению патогенных микроорганизмов, таких как вирусы растений. В дополнение к механической опоре стена выступает в качестве каркаса, который может препятствовать слишком быстрому расширению или росту клетки. Белки, целлюлозные волокна, полисахариды и другие структурные компоненты помогают стенке поддерживать форму клетки.

Она также играет важную роль в транспорте. Поскольку стенка представляет собой полупроницаемую мембрану, она позволяет проходить определенным веществам, таким как белки. Это позволяет стене регулировать диффузию в клетке и контролировать, что входит или выходит.

Кроме того, полупроницаемая мембрана помогает связи между клетками, позволяя сигнальным молекулам проходить через поры.

Из чего состоит клеточная стенка?

Клеточная стенка растения состоит в основном из углеводов, таких как пектины, целлюлоза и гемицеллюлоза. Она также содержит структурные белки в меньших количествах и некоторые минералы, такие как кремний. Все эти компоненты являются жизненно важными частями клеточной стенки.

Целлюлоза представляет собой сложный углевод и состоит из тысяч мономеров глюкозы, которые образуют длинные цепи. Эти цепи собираются вместе и образуют целлюлозные микрофибриллы диаметром несколько нанометров. Микрофибриллы помогают контролировать рост клетки, ограничивая или допуская ее расширение.

Тургорное давление клетки

Одна из главных причин наличия стенки в растительной клетке заключается в том, что она может противостоять тургорному давлению, и именно здесь целлюлоза играет решающую роль.

Тургорское давление — это сила, создаваемая выталкивающей внутренней частью ячейки.

Микрофибриллы целлюлозы образуют матрицу с белками, гемицеллюлозами и пектинами, чтобы обеспечить прочную основу, которая может противостоять тургорному давлению.

И гемицеллюлозы, и пектины являются разветвленными полисахаридами. Гемицеллюлозы имеют водородные связи, соединяющие их с микрофибриллами целлюлозы, в то время как пектины удерживают молекулы воды, образуя гель. Гемицеллюлозы увеличивают прочность матрицы, а пектины помогают предотвратить сжатие.

Белки в клеточной стенке

Белки в клеточной стенке выполняют разные функции. Некоторые из них обеспечивают структурную поддержку. Другие ферменты, которые являются типом белка, который может ускорить химические реакции.

Эти ферменты помогают формированию и нормальных изменений, которые происходят для поддержания клеточной стенки завода. Они также играют роль в созревании плодов и изменении цвета листьев.

Вещества клеточной стенки

Эукариотические организмы, такие как водоросли, грибы и высшие растения, имеют многослойные клеточные стенки, состоящие в основном из целлюлозы или хитина.

Целлюлоза и хитин являются полисахаридами, то есть они состоят из множества связанных молекул сахара.

Целлюлоза представляет собой полимер из глюкозы, который содержит только углерод, водород и кислород, в то время как хитин представляет собой полимер из N-ацетилглюкозамина, сахар, который содержит азот также.

Как целлюлоза, так и хитин являются линейными неразветвленными полимерами соответствующих сахаров, и несколько десятков этих полимеров собраны в большие кристаллоподобные кабели, называемые микрофибриллами, которые наматываются на клетки.

Целлюлоза клеточной стенки

Целлюлоза состоит из нескольких тысяч молекул глюкозы , соединенных друг с другом.

Химические связи между отдельными субъединицами глюкозы дают каждой молекуле целлюлозы плоскую лентообразную структуру, которая позволяет соседним молекулам латерально объединяться в микрофибриллы длиной от двух до семи микрометров. Целлюлозные волокна синтезируются ферментами, плавающими в клеточной мембране.и расположены в конфигурации розетки.

Кажется, что каждая розетка способна «закрутить» микрофибриллу в клеточную стенку.

Во время этого процесса, когда новые субъединицы глюкозы добавляются к растущему концу фибрилл, розетка проталкивается вокруг клетки на поверхности клеточной мембраны, и ее целлюлозная фибрилла оборачивается вокруг протопласта. Таким образом, каждая растительная клетка может рассматриваться как составляющая свой собственный целлюлозно-фибрильный кокон.

Целлюлоза состоит из молекул глюкозы, соединенных между собой.

В отличие от других компонентов клеточной стенки, которые синтезируются в организме Гольджи (органелле, которая производит, сортирует и транспортирует различные макромолекулы внутри клетки), целлюлоза синтезируется на поверхности клетки растения. В плазматическую мембрану растения встроен фермент, называемый синтетазой целлюлозы, который синтезирует целлюлозу.

Когда целлюлоза синтезируется, она самопроизвольно образует микрофибриллы, которые осаждаются на поверхности клетки.

Поскольку фермент синтетазы целлюлозы находится в плазматической мембране, новые целлюлозные микрофибриллы откладываются под более старые целлюлозные микрофибриллы.

Таким образом, самые старые целлюлозные микрофибриллы находятся на внешней стороне стенки, в то время как более новые микрофибриллы находятся на внутренней стороне стенки.

Функции клеточной стенки

Клеточные стенки обеспечивают жесткость и защиту. Для многоклеточных организмов клеточная стенка также связывает разные клетки вместе. Растения используют клеточную стенку как часть своей системы для поддержания формы и жесткости.

Она придает растению актуальную форму, действует как привратник, потому что она определяет, что может входить и выходить из ячейки, чтобы обеспечить защиту. Это похоже на внешние кирпичи замка, только, в этом замке есть отверстия. Эти отверстия делают клетку уязвимой, но они важны для ее функционирования.

Красное дерево и одуванчик имеют клеточные стенки снаружи всех своих клеток. Клеточные стенки предназначены для того, чтобы дать растениям форму и поддержку; однако клеточные стенки действуют и конструируются немного по-другому, чтобы удовлетворить потребности конкретного растения.

Например, 100-футовому дереву красного дерева нужна очень прочная и жесткая клеточная стенка растения, чтобы оно могло вырасти до своей большой высоты и не упасть на ветру. С другой стороны, маленький желтый одуванчик в поле должен иметь большую пластичность, чтобы он мог сгибаться, а не ломаться, когда ветер дует.

Вы когда-нибудь забывали поливать цветы? Возможно, они не смогут говорить, но они дадут вам знать, когда захотят пить, и начнут опускаться.

Их форма по-прежнему поддерживается клеточной стенкой, так что, как только вы поливаете растение, оно может снова подняться.

С другой стороны, если вы слишком много дали им воды, клеточная стенка также предотвращает перенасыщение водой, она защищает клетку от чрезмерного расширения.

Клеточная стенка защищает растение и клетки от многих насекомых и патогенных микроорганизмов, которые могут нанести вред растению, но клеточная стенка имеет свои уязвимые участки. По всей клеточной стенке есть отверстия, называемые плазмодесмами.

Это отверстия, которые позволяют питательным веществам проникать в клетку, а также отходам, выходящим из клетки. Эти маленькие отверстия могут вызвать потерю клеткой воды, и именно тогда растение начнет опускаться.

Но как только растение сможет выпить, оно вернется к своей правильной форме.

Структура растительной клеточной стенки

Стенки растительных клеток представляют собой трехслойные структуры со средней пластинкой, первичной клеточной стенкой и вторичной клеточной стенкой.

Средняя пластинка является самым внешним слоем и помогает в межклеточных соединениях, удерживая соседние клетки вместе (другими словами, она располагается между клеточными стенками двух клеток и удерживает их вместе; именно поэтому она называется средней пластинкой, хотя это самый внешний слой).

Средняя пластинка действует как клей или цемент для растительных клеток, потому что она содержит пектины. Во время деления клетки формируется первая средняя пластинка.

Первичная клеточная стенка

Развивается когда клетка растет, поэтому она имеет тенденцию быть тонкой и гибкой. Она образуется между средней пластинкой и плазматической мембраной.

Она состоит из целлюлозных микрофибрилл с гемицеллюлозами и пектинами. Этот слой позволяет клетке расти со временем, но не слишком ограничивает рост клетки.

Вторичная клеточная стенка

Более толстая и более жесткая, поэтому она обеспечивает большую защиту растения. Она существует между первичной стенкой и плазматической мембраной. Часто первичная стенка фактически помогает создать эту вторичную стенку после того, как клетка заканчивает расти.

Вторичные клеточные стенки состоят из целлюлозы, гемицеллюлозы и лигнина. Лигнин является полимером ароматического спирта, который обеспечивает дополнительную поддержку растения. Это помогает защитить растение от нападений насекомых или патогенных микроорганизмов. Лигнин также помогает с водным транспортом в клетках.

Разница между первичными и вторичными клеточными стенками в растениях

Когда вы сравниваете состав и толщину первичных и вторичных клеточных стенок у растений, легко увидеть различия.

Во-первых, первичные стенки содержат одинаковое количество целлюлозы, пектинов и гемицеллюлоз. Однако вторичные стенки не содержат пектина и содержат больше клетчатки. Во-вторых, целлюлозные микрофибриллы в стенках первичных клеток выглядят случайными, но они организованы во вторичные стенки.

Хотя ученые обнаружили много аспектов функционирования клеточных стенок у растений, некоторые области все еще нуждаются в дополнительных исследованиях.

Например, они все еще узнают больше о фактических генах, вовлеченных в биосинтез клеточной стенки. Исследователи считают, что в этом процессе принимают участие около 2000 генов. Другая важная область исследования — как генная регуляция работает в клетках растений и как она влияет на стенку.

Клеточная стенка грибов

Клеточные стенки грибов содержат хитин, который является производным глюкозы, похожим по структуре на целлюлозу. Слои хитина очень жесткие; хитин — это та же молекула, которая содержится в жестких экзоскелетах животных, таких как насекомые и ракообразные.

Глюканы, которые являются другими полимерами глюкозы, также обнаруживаются в клеточной стенке гриба вместе с липидами и белками. У грибов есть белки, названные гидрофобинами в их клеточных стенках.

Обнаруженные только в грибах, гидрофобины придают клеткам силу, помогают им прилипать к поверхности и помогают контролировать движение воды в клетки.

У грибов клеточная стенка является наиболее внешним слоем и окружает клеточную мембрану.

Клеточная стенка бактерий

Бактериальная стенка имеет пептидогликаны.

Пептидогликан или мурейн — это уникальная молекула, которая состоит из сахаров и аминокислот в сетчатом слое и помогает клетке сохранять свою форму и структуру.

Клеточная стенка у бактерий существует вне плазматической мембраны. Стена не только помогает настроить форму ячейки, но также помогает предотвратить разрыв ячейки и разлив всего ее содержимого.

Источник: https://karatu.ru/kletochnaya-stenka/

Медицина и здоровье
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: