Назовите участки гена

Содержание
  1. Гены: что это такое и как они работают. Что такое хромосомы?
  2. Всё началось с гороха
  3. Днк как носитель генов
  4. Что такое хромосомы
  5. Как работают гены
  6. Что такое мутация
  7. Хромосомная теория наследственности. Современные представления о гене и геноме
  8. Основные положения:
  9. Современные представления о гене и геноме
  10. Генетика и гены
  11. Что изучает генетика?
  12. Зарождение генетики
  13. Первые шаги
  14. Опыты Менделя
  15. В чем причина?
  16. Роль генов
  17. Гены и рост клеток
  18. Где расположены гены?
  19. Как работают гены?
  20. Наследственная информация животного и растительного мира
  21. Клонирование
  22. Что такое клонирование?
  23. Клонирование овечки Долли
  24. Можно ли клонировать мамонтов?
  25. Восстановление участка нити ДНК по цепочке иРНК. Определение структуры участка ДНК, кодирующего указанный полипептид
  26. 1. Транскрипция и трансляция данного фрагмента гена до мутации
  27. 2. Транскрипция и трансляция данного фрагмента гена после мутации

Гены: что это такое и как они работают. Что такое хромосомы?

Назовите участки гена

Ген – это наследственный фактор, в котором зашифрован определенный признак организма. Физически ген представляет собой участок ДНК (реже – РНК), который задает последовательность белков либо функциональной РНК. Совокупность генов в организме называют генотипом, а науку о генах – генетикой.

Всё началось с гороха

Аббат Грегор Мендель, австрийский ботаник и биолог, заметил, что потомство не всегда повторяет признаки, которыми обладали родители. Чтобы понять взаимосвязь, Мендель стал выращивать горох, скрещивать различные растения и отслеживать частоту наследования признаков.

Мендель доказал, что отдельные признаки (цвет, форма цветка и т.д.) могут наследоваться независимо. Он вывел теорию доминантных и рецессивных признаков, описал явление прерывистого наследования, математически интерпретировал результаты своих экспериментов.

Труды Менделя впервые опубликовали в 1866 году. Именно его считают основоположником генетики.

До этого ученые считали, что родительские признаки смешиваются подобно жидкости и потомки наследуют именно такой «коктейль». Теория пангенезиса, которую Чарльз Дарвин сформулировал в 1868 году, также следует этой концепции.

Впрочем, Дарвин считал, что «коктейль» состоит из мельчайших отдельных частиц – геммул. Они смешиваются во время зачатия. В целом ученый был недалек от истины.

Собственно термин «ген» в 1909 году ввел Вильгельм Йоханнсен. До этого признаки называли пангенами.

Днк как носитель генов

В 1940-е годы американский биолог Освальд Эвери из Рокфеллеровского института доказал, что дезоксирибонуклеиновая кислота, которая присутствует в ядре клетки, является физическим носителем генетической информации. В экспериментах с пневмококками он установил, что только ДНК, а не белок или другие компоненты, передает признаки от бактерий к их наследникам.

Первые фото ДНК удалось получить только в 1953 году Розалинд Франклин и Морису Уилкинсу. На их основе Джеймс Д. Уотсон и Фрэнсис Крик разработали модель молекулы двухцепочечной спирали ДНК, а также сформулировали теорию генетической репликации – создания двух дочерних ДНК от материнской клетки.

Всё это привело к появлению главной догмы молекулярной биологии. РНК (рибонуклеиновая кислота, одинарная цепочка) транскрибируется с ДНК: ДНК выступает в качестве базы, с которой на РНК переносится информация. При этом белки транслируются с РНК. Обратный процесс (когда ДНК создается по РНК) происходит только в некоторых вирусах, например, в ВИЧ (вирусе иммунодефицита человека).

ДНК состоит из четырех различных нуклеотидов: аденина (А), цитозина (Ц), гуанина (Г) и тимина (Т). Они образуют спаренные основания: ЦГ, АТ, ГЦ, ТА. Противоположные основания в спирали ДНК связаны водородными связями.

Что такое хромосомы

Хромосома образуется из очень длинной молекулы ДНК, которая содержит повторяющиеся цепочки генов. У каждого вида свой набор хромосом (кариотип). Например, у человека 46 хромосом: 22 пары аутосом разной длины и пара половых хромосом – XX или XY.

В геноме человека насчитывается 20-25 тыс. генов. Если молекулу ДНК из самой длинной хромосомы расположить вдоль линии, она займет около 1,5 м. Длина отдельного участка ДНК, который кодирует ген, составит всего 0,005 мм.

Место хранения определенного гена в хромосоме называют локусом. В каждом локусе – определенный аллель гена, одна из нескольких его форм.

Аллели могут быть одинаковыми – тогда говорят, что организм гомозиготный. Если аллели разные, то один из них главенствует, доминирует над другим. Доминантный ген подавляет рецессивный. В результате проявляется только один признак, но наследуются оба.

Набор хромосом и аллелей генов в них определяет наш внешний вид, физические и психические данные. Это база, которую затем изменяют природа, среда, образ жизни и т.д.

Как работают гены

Гены можно разделить на две группы – структурные и регуляторные. В структурных генах хранится информация о полипептидных цепях – это собственно признаки. Регуляторные, или функциональные гены включают и выключают структурные гены.

Назначение структурного гена в любом организме – в нужный момент обеспечить появление в клетке белка, который он кодирует. Чтобы это произошло, задействуются различные части гена.

Так, промотор, который находится перед белок-кодирующей частью, задает основные характеристики активности гена. Промотор определяет, в каких клетках будет работать ген, насколько долго и с какой интенсивностью. В конце гена находится терминатор – это сигнал конца цепочки.

РНК-полимераза проходит путь от промотора до терминатора и выполняет синтез матричной РНК – своеобразной инструкции для синтеза белка, правильного расположения в нем нужных аминокислот. Этот процесс называют транскрипцией.

Регуляторные гены – это гены-регуляторы и гены-операторы. Оператор непосредственно связан с определенной группой структурных генов (и такая конструкция называется «оперон»). Регулятор через белок-репрессор воздействует на структурные гены и обеспечивает синтез белка – трансляцию.

В синтезе белка участвует два десятка аминокислот. Каждые три нуклеотида ДНК кодируют определенную аминокислоту. Трансляция происходит на базе РНК-копии гена из ДНК:

  1. Матричная РНК выходит из ядра клетки в цитоплазму и связывается с рибосомой.

  2. В рибосоме синтезируется РНК-копия гена по инструкции из матричной РНК. Затем у этой РНК-копии будет синтезироваться белок.

  3. Из РНК-копии удаляются нитроны – нуклеотиды, которые не нужны для синтеза белка.

  4. Оперон начинает реакцию по синтезу белка. Пока молекул белка недостаточно, белок-репрессор неактивен.

  5. Как только накопилось достаточно молекул синтезируемого белка, белок-репрессор активируется.

  6. Он связывается с геном-оператором.

  7. После связывания синтез белка прекращается.

Что такое мутация

При репликации (копировании) ДНК очень редко, но всё же могут возникать ошибки. Их называют мутациями. Ученые подсчитали, что представитель каждого нового поколения несет в своем геноме 1-2 новых мутации.

Обычно мутации возникают из-за повреждения ДНК в процессе копирования. Они могут привести к хромосомным аномалиям: когда достаточно большие участки хромосомы дублируются, удаляются или перегруппируются.

В результате мутаций белки начинают синтезироваться неправильно. В целом в организмах есть механизмы «ремонта» ДНК после мутаций или уничтожения клеток-мутантов, но они не всегда срабатывают.

Если мутации происходят в половой клетке, у плода могут неправильно сформироваться целые органы и системы. Если в обычной клетке, то могут появиться доброкачественные или злокачественные образования.

С другой стороны, отдельные мутации оказывались удачными. Они сыграли важную роль в процессе естественного отбора и привели к созданию более выносливых и приспособленных организмов.

Источник: https://www.anews.com/p/123881962-geny-chto-ehto-takoe-i-kak-oni-rabotayut-chto-takoe-hromosomy/

Хромосомная теория наследственности. Современные представления о гене и геноме

Назовите участки гена

Термин «ген» ввел в 1909 году И.В. Людвиг, тогда же Т. Морган (рис. 6), предложил хромосомную теорию наследственности. Ученые опытным путем доказали, что гены — это участки хромосом. Также были сформулированы основные закономерности наследования признаков. Окончательный вариант хромосомной теории — заслуга Т. Моргана и его учеников.

И.В. Людвиг Т. Морган

Основные положения:

  • Гены находятся в хромосомах, где располагаются линейно на определенных расстояниях и не перекрываются друг с другом.
  • Гены в составе одной хромосомы образуют группу сцепления.
  • Признаки, определяемые генами в одной хромосоме, наследуются вместе.
  • Чем дальше гены расположены друг от друга в хромосоме, тем меньше вероятность, что они войдут в группу сцепления.
  • Разные хромосомы могут содержать неодинаковое количество генов.
  • В гомологичных хромосомах находятся гены, отвечающие за развитие одних и тех же признаков.
  • Аллельные гены расположены в строго определенных участках или локусах хромосом.
  • Группа сцепления способна распадаться при кроссинговере.
  • В потомстве гетерозиготных родителей возникают новые сочетания генов, находящихся в одной паре хромосом. Это происходит в результате кроссинговера.

Хромосомная теория помогла объяснить механизмы, лежащие в основе опытов Менделя. Были определены внутриклеточные пути и способы наследования.

Современные представления о гене и геноме

Ген — материальная единица хранения и передачи наследственной информации. По современным представлениям, это участок макромолекулы ДНК. Одни гены являются структурными — кодируют первичную структуру белковых молекул, строение РНК. Регуляторные гены вызывают активизацию считывания информации или подавляют этот процесс.

Для передачи информации служит генетический код. Так называют соответствие между тремя последовательными нуклеотидами (триплетами) и аминокислотами в белках. Гены идут последовательно в молекулах ДНК, из которых формируются хромосомы. Совокупность генов организма или генотип обуславливает проявление большинства внешних и внутренних признаков живого существа.

В клетках организма человека насчитывается по приблизительным подсчетам от 30 до 120 тыс. элементарных единиц наследственности. Огромное количество и разнообразие генов «упаковано» в нити и спирали ДНК. Хромосом в кариотипе значительно меньше — 22 пары аутосом и пара половых хромосом.

Гены и хромосомы

Когда между гомологичными хромосомами происходит конъюгация, возможен обмен аллельными генами (кроссинговер). Изучение этого явления позволяет точно установить расположение каждого гена в хромосоме. На основе экспериментов были созданы хромосомные карты многих видов живых существ. Такие исследования проведены для гороха, дрозофилы, томата, мыши.

Проект «Геном человека» стартовал в 1989 году. На первом этапе ученые определяли полную последовательность нуклеотидов в человеческой ДНК. Работу удалось выполнить в течение 10 лет. В ходе исследования ученые обнаружили много ранее неизвестных генов. Предстоит подробнее изучить их роль в организме.

В 2000 году официально объявили, что расшифрована последовательность нуклеотидов всех хромосом человека. Изучение строения и поведения хромосом, генов позволит добиться успеха в лечении пока неизлечимых заболеваний. Эти знания помогут определить влияние наследственности на здоровье и продолжительность жизни конкретного человека.

У большинства людей в течение жизни проявляются наследственные болезни или выявляется предрасположенность к каким-либо нарушениям здоровья. Известно более 5 тыс.

наследственных патологий, это число с каждым годом увеличивается. Не последнюю роль играют мутагены — факторы, повышающие вероятность развития мутаций.

Это радиоактивность, токсичные вещества, электромагнитные волны и др.

Изучение генов — это прямой путь к созданию новейших методов диагностики, эффективному лечению наследственных заболеваний.

Расшифровка последовательности ДНК позволяет определить генетическую совместимость при трансплантации. Пересадку органов можно будет выполнять успешнее, результативнее.

Уже проводятся исследования возможности «улучшения» человека с помощью методов генетики.

Полученные знания о структуре генома человека оказались важны для палеонтологии, археологии, антропологии. Более точными станут выводы ученых об эволюции жизни на Земле, происхождении человека, путях миграций в древности и возникновении народов.

Смотри также:

Источник: https://bingoschool.ru/manual/256/

Генетика и гены

Назовите участки гена

Почему ты похож на родителей? Почему у тебя такой же цвет глаз или волос, как у мамы или папы? Что такое гены и как они работают? Чем прославилась овечка Долли? Ответы на эти и многие другие вопросы дает генетика.

Что изучает генетика?

Генетика изучает, каким образом передаются отличительные признаки клеток из одного поколения в другое Это наука о том, как от родителей к детям передаются цвет глаз, форма носа, рост и даже определенные черты характера. Но не думай, что генетика занимается изучением только человека. Наследственность характерна для всех живых существ. И растения, и животные также передают характерные им черты из поколения в поколение.

Семейное древо

Зарождение генетики

Какого цвета твои глаза, волосы, кожа? Почему у тебя такие же вьющиеся волосы, как и у твоей мамы? Почему ты очень похож на своих родителей, но не являешься их полной копией? Почему листики одного дерева такие разные? Ответы на все эти вопросы дает один из самых интересных разделов биологии — генетика.

Первые шаги

В течение очень длительного периода людям была непонятна причина схожести родственных организмов. Ситуация изменилась в 60-х гг. XX в.

, когда австрийский биолог и ботаник, монах августинского монастыря в Брно Грегор Мендель начал проводить опыты на горохе в монастырском саду.

Он хотел узнать, каким образом определенные признаки живых существ передаются из одного поколения в другое.

Грегор Мендель

Следующий научный шаг в изучении генетики был сделан в 1909 г. датским биологом профессором Вильгельмом Иогансеном, который ввел и объяснил термин «ген». Несколько позже, в 1923 г., американский биолог Томас Морган доказал, что гены находятся в хромосомах, и сформулировал хромосомную теорию наследственности. С тех пор генетика стала развиваться на уровне гена.

Опыты Менделя

Менделя интересовали высота растения, цвет цветков и форма горошин.

Занимаясь перекрестным опылением гороха, он тщательно анализировал получаемые результаты и наблюдал, какие именно признаки и в каком поколении передавались по наследству.

Причем каждый раз в перекрестном опылении участвовали специально отобранные растения с теми признаками, которые, как думал Мендель, обязательно должны передаться последующему поколению.

В чем заключалась суть экспериментов биолога?

Одним из признаков, которые исследовал Мендель, был цвет цветков гороха. В своих первых опытах он отобрал только те сорта, которые цветут белыми и красными цветками. Мендель был уверен, что после скрещивания в первом поколении (поколение F1) будут растения как с белыми, так и с красными цветками. Каково же было его удивление, когда абсолютно все цветки оказались красными!

Такой результат не только не остановил ученого, но и заставил продолжить эксперименты. Мендель опылил цветки полученных растений первого поколения их же пыльцой и ожидал совершенно логичного результата — красных цветков. Но снова его предположения не оправдались: во втором поколении (поколение F2) 75% всех цветков были красными, а оставшиеся 25% — белыми!

В чем причина?

Такой неожиданный результат вовсе не огорчил ученого. Благодаря полученным данным он пришел к выводу о том, что у каждого растения не один, а два гена, которые принимают участие в передаче определенных признаков. Он назвал красный цвет гороха главным, доминантным, а белый — рецессивным, уступающим признаком.

При наличии двух разных генов (например, красного и белого), определяющим при цветении будет доминантный ген. Поэтому, если у растения есть оба гена (красный и белый), на цвет цветка будет влиять доминантный ген красного цвета. А тот факт, что среди дочерних растений могут быть и цветки белого цвета, говорит лишь о наличии этого гена у растения.

У одного и того же гена может быть две или более разновидностей: одна — сильная, вторая — слабая. Сильная разновидность называется доминирующей, а слабая — рецессивной.

Роль генов

заслуга Грегора Менделя заключается в том, что он изложил основы генетики — принципы передачи наследственных признаков от родителей к потомкам.

Мендель пришел к выводу о том, что в живом организме за любой наследуемый признак (рост, цвет глаз, волос, кожи, форма уха у человека, листа и стебля у растений и т.д.) отвечают два гена. И во время воспроизводства каждый родитель отдает своему потомку только один ген из каждой пары.

Это означает, что дочернее поколение наследует по одному гену у каждого родителя, и таким образом в организме потомка образуется новая пара генов.

Гены — это носители наследственной информации. По сути эти мельчайшие структуры несут очень четкую «инструкцию по эксплуатации» нашего организма.

Гены представляют собой участки ДНК, несущие информацию о наличии определенных признаков и следящие за тем, чтобы развитие организма происходило строго в соответствии с этими данными.

В каждой клетке человека находится от 25 000 до 35 000 генов, содержащих специфические биологические коды, или информацию, которую живые существа наследуют от своих родителей.

Гены и рост клеток

С ростом человека число клеток увеличивается. При этом каждая часть тела состоит из определенных клеток кожи, мышц, внутренних органов и т.д, — имеющих разное назначение и свойства.

У тебя может возникнуть логичный вопрос откуда клетки знают, где им расти? Почему на месте рук всегда вырастают руки, а не нос? Об этом даже подумать страшно! Конечно, теоретически такая опасность есть, но мудрая природа придумала молекулу, в которой зашифрован весь план нашего развития, — молекулу ДНК. Она есть внутри абсолютно каждой клетки нашего организма.

Именно ДНК содержит информацию о том, что и где у нас вырастет. Эту молекулу каждый из нас получает в наследство от родителей. Поэтому мы и похожи на них. У каждого живого существа своя молекула ДНК которая определяет наличие хвоста, рогов, длинных ушей и т.д. За каждый из этих признаков отвечает отдельный участок ДНК который называется ген. Ученые подсчитали, что таких генов более 30 000.

«ДНК» расшифровывается как «дезоксирибонуклеиновая кислота».Эта молекула обеспечивает хранение и передачу генетической информации из одного поколения в другое. Благодаря информации, содержащейся в генах, мы наследуем определенные признаки от своих родителей: цвет глаз, волос и кожи, рост, структуру волос, форму ногтей и пальцев и многое другое.

Генетика занимается не только изучением, но и изменением генов. Например, уже сегодня биологи научились менять гены некоторых растений. Эти растения так и называются — генно-модифицированные. Так, биологи вывели сорта помидоров, которые менее прочих чувствительны к холоду, а также несъедобные для насекомых овощи.

Хромосомы человека (всего 46)

Где расположены гены?

Гены находятся в небольших элементах, похожих на спагетти, которые называются хромосомы. Хромосомы расположены в ядре клетки. Следует иметь в виду, что у различных живых организмов количество хромосом разное. В клетке человека находятся 23 пары хромосом, т.е. 46 в каждой клетке причем одна половина хромосом достается от одного родителя, другая — от другого.

Две последние из 46 хромосом (X и У) определяют пол человека. Девочка наследует две Х-хромосомы, а мальчик — одну Х-хромосому и одну У-хромосому.

Как работают гены?

Каждый ген выполняет свою работу. ДНК в гене выдает особые инструкции (такие же, как, например, в кулинарных книгах) для производства белка в клетке.

Белки — это строительные «кирпичики» нашего организма. Кости и зубы, кровь и мышцы, волосы и ушные раковины — все эти органы состоят из белков, которые помогают нашему организму расти, изменяться и оставаться здоровым

Наследственная информация животного и растительного мира

Гены передают наследственную информацию не только у человека, этот процесс свойственен всем живым организмам. Именно поэтому вокруг нас такое разнообразие животных и растений. Взять, например, породы собак.

Для каждой породы характерны свои отличительные признаки, которые передаются из одного поколения в другое. Одни собаки очень маленькие, другие — очень большие.

У одних длинная шелковистая шерсть, у других ее и вовсе нет.

У собак породы далматин есть гены, отвечающие за количество черных и белых пятен. Волнистая шерсть карликового пуделя и пятна на шкуре жирафа также определяются особыми генами, передающими этот признак по наследству.

Сегодня гены являются предметом скрупулезного изучения генетиков всего мира. Ученые хотят достоверно знать, какие именно белки вырабатываются каждым геном и за что именно отвечает каждый белок. Их также интересуют заболевания, вызванные тем, что какой-то ген имеет измененную структуру и неправильно выполняет свою работу. Изменение гена называется мутацией.

По мнению исследователей, именно мутации являются одной из причин многих серьезных заболеваний, например рака. Менее значительные проблемы со здоровьем возникают в случае нехватки гена или наличия лишних частей гена в хромосоме.

Клонирование

Скорее всего, ты слышал о знаменитой овечке Долли. Это первое существо, полученное путем клонирования взрослого животного. Почему именно взрослого? Дело в том, что искусственное клонирование животных началось с 60-х гг. XX в.

В течение 35 лет ученым удалось клонировать лягушку, мышь и даже несколько овечек.

Но генетический материал для этих клонов был взят на стадии эмбрионов, а Долли получила мировое признание, так как была клонирована на основе материала, взятого у взрослого животного.

В природе широко распространено естественное клонирование. У многих растений образование новой особи происходит вегетативно, т.е. из части организма родителя. Естественное клонирование происходит у некоторых видов ящериц и броненосцев. Самки и самцы огненных муравьев также клонируются независимо друг от друга. У  человека естественными клонами являются идентичные (однояйцовые) близнецы

Что такое клонирование?

Клонирование — это создание организма с тем же набором генов, который содержится в исходной копии. Это означает, что полученный клон генетически идентичен тому организму, из которого взята ДНК. Ты уже знаешь, что любое живое существо вырастает из одной яйцеклетки, при этом половину генетического материала оно получает от одного родителя, а вторую половину — от другого.

В случае клонирования весь генетический материал берется из клетки одной особи.

Происходит это следующим образом: из оплодотворенной яйцеклетки удаляется ядро и переносится в другую, неоплодотворенную яйцеклетку, ядро которой было предварительно удалено.

Затем эта яйцеклетка пересаживается суррогатной матери. Сейчас такая процедура успешно применяется для клонирования различных животных: крыс, кошек, собак, коров и т.д.

Клонирование овечки Долли

В 1996 г. стало известно о первом удачном опыте клонирования млекопитающих. В результате многочисленных экспериментов, проведенных под руководством британского эмбриолога Яна Уилмута, родилась овечка Долли.

Ягненок Долли, родившийся 5 июля 1996 г., оказался первой генетической копией другого организма – донора клетки. Однако далеко не все попытки клонирования овцы были удачными. В ходе эксперимента ученые заменили ДНК в 277 яйцеклетках, из которых около 30 смогли развиться до состояния Эмфиона, а выжило и выросло только одно животное!

Для клонирования Долли были использованы клетки вымени взрослой овцы-донора. Причем брались замороженные клетки уже умершего к тому времени животного. Интересно, что в случае с Долли суррогатной матерью была овца с черной шерстью, а Долли родилась с белой, т.е. точно такой же, как и овца, у которой был взят генетический материал.

Каждый из нас является результатом объединения генов, полученных от мамы и от папы. Поэтому каждый ген в нашем организме присутствует в двух экземплярах: один — от папы, один — от мамы.

Что касается клонирования овечки Долли, то у нее не было ни отца, ни матери. Ведь для создания клона была взята неоплодотворенная яйцеклетка от одной особи.

Из этой яйцеклетки убрали всю генетическую информацию, т.е. ядро, и ввели генетическую информацию от другой овцы (из клетки ее вымени).

В результате такого слияния возникла яйцеклетка, в которой был двойной набор генов, но не потому, что одна половина из них была от папы, а вторая половина — от мамы, а потому, что из клетки второй овцы было взято ядро с двойным набором генов. Затем эту яйцеклетку подсадили в организм третьей овцы — суррогатной матери. Вряд ли этих животных можно считать родителями Долли.

С точки зрения генетики, Долли является полным клоном того животного, из клетки вымени которого было взято ядро.

Можно ли клонировать мамонтов?

Казалось бы, какая разница, кого клонировать? В случае с мамонтами, например, в качестве суррогатной матери можно использовать слониху, в качестве донора энуклеированной (безъядерной) яйцеклетки — тоже, а источником генетической информации мамонта могут стать очень хорошо сохранившиеся в условиях вечной мерзлоты останки этих животных.

По данным ученых клеточная структура таких останков представлена довольно хорошо: в клетках есть белки, ядра, ДНК и т.д. Казалось бы, чисто технически все компоненты клонирования в наличии.

Однако возникает вопрос сможет ли генетическая информация мамонта реализовать заложенную в ней программу в условиях Яйцеклетки слона? Слон и мамонт — близкие виды, но не идентичные.

Несмотря на внешнюю похожесть, на генетическом уровне у них миллионы различий (как, например, у человека и шимпанзе). Может случиться так, что генетическая программа мамонта не будет работать в яйцеклетке слона.

Скелет мамонта

Еще одна проблема — состояние ДНК останков мамонта. Все дело в том, что под действием множества факторов очень длинная молекула ДНК со временем распадается. Генетическая информация мамонта представлена в виде определенного генетического текста, благодаря которому можно понять принадлежность ДНК именно этому биологическому виду.

Для клонирования мамонта нужно найти ядро клетки с неповрежденной ДНК.

Это не так-то просто: в клетках большинства доступных ученым останков молекула ДНК уже наверняка разделилась на нескольких кусочков.

Восстановить ее — это примерно то же самое, что разорвать журнал на множество мельчайших клочков, а потом пытаться собрать его. Так что клонирование мамонтов по-прежнему остается вопросом будущего.

ссылкой

Источник: https://SiteKid.ru/biologiya/vse_o_genah.html

Восстановление участка нити ДНК по цепочке иРНК. Определение структуры участка ДНК, кодирующего указанный полипептид

Назовите участки гена

Задача 91. Полипептид состоит из следующих аминокислот: валин – аланин – глицин – лизин – триптофан – валин – серин – глутаминовая кислота – тирозин. Определите структуру участка ДНК, кодирующего указанный полипептид.

Решение: 

В условиях задачи последовательность аминокислот в полипетиде дана. По этим сведениям нетрудно установить строение иРНК, которая управляла синтезом данного полипептида. По таблице генетического кода находим структуру триплета валина (ГУУ), затем для аланина (ГЦУ), глицина (ЦАА), лизина (ААА), триптофана (УГГ), валина (ГУУ), серина (УЦУ), глутаминовой кислоиы (ГАА) и тирозина (УАУ). Подобрав кодирующие триплеты, составляем иРНК для данного полипептида: ГУУГЦУГГУАААГУУУЦУГААУАУ. По цепочке иРНК можно восстановить участок нити ДНК, с которой она снималась. Урацил вставал против аденина ДНК, гуанин – против цитозина и т.д. Следовательно, участок интересующей нас цепи ДНК будет иметь следующее строение:

участок иРНК: ГУУ ГЦУ ЦАА ААА УГГ ГУУ УЦУ ГАА УАУ
участок ДНК:  ЦАА ЦГА ГТТ ТТТ АЦЦ ЦАА АГА ЦТТ АТА

Но ДНК состоит из двух цепочек. Зная строение одной цепи, по принципу комплементарности достраиваем вторую. Целиком участок двухцепочечной ДНК, кодирующий данный полипептид, будет иметь следующее строение:

1-я цепь ДНК: ЦАА ЦГА ГТТ ТТТ АЦЦ ЦАА АГА ЦТТ АТА 
2-я цепь ДНК: ГТТ ГЦТ ЦАА ААА ТГГ ГТТ ТЦТ ГАА ТАТ.
 

Задача 92. Фрагмент гена представлен 21 основанием экзона и пятью последующими основаниями интрона: АТАТАТГЦАТГЦГЦГЦАТАТГ ТАЦ. В девятом положении данной последовательности оснований произошла замена А на Ц. Смодулируйте транскрипцию и трансляцию данного фрагмента гена до мутации и после.

Решение:

Экзоны – это кодирующие последовательности ДНК генов эукариот, представленные в зрелой молекуле РНК. Интроны – это некодирующие участки генов эукариот, которые транскрибируются, но затем вырезаются из первичного транскрипта во время сплайсинга и не входят в состав зрелых РНК, т.е. не транслируются.
Транскрипция представляет собой синтез молекулы иРНК на молекуле ДНК. То есть ДНК служит матрицей для синтеза иРНК.
Трансляция (от лат. translatio — перенос, перемещение) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК, мРНК), осуществляемый рибосомой. Информационная РНК по принципу комплементарности снимает информацию с ДНК. Этот процесс называется транскрипцией. При этом к цитозину присоединяется гуанин, к гуанину – цитозин, к тимину – аденин, однако к аденину ДНК присоединяется не тимин, а урацил. Таким образом, для решения задачи достаточно произвести замену нуклеотидов по схеме:

Ц → Г, Г → Ц, А →У, Т → А.

1. Транскрипция и трансляция данного фрагмента гена до мутации

а) транскрипция данного фрагмета гена до мутации, получим:

цепочка ДНК –   А Т А Т А Т Г Ц А Т Г Ц Г Ц Г Ц А Т А Т Г Т А Ц,
молекула иРНК – У А У А У А Ц Г У А Ц Г Ц Г Ц Г У А У А Ц А У Г.

б) Трансляция данного фрагмета гена до мутации, получим:

молекула иРНК – УАУ АУА ЦГУ АЦГ ЦГЦ ГУА УАЦ  А У Г

По таблице генетического кода (иРНК) находим порядок аминокислот в белковой молекуле, получим: триплету (УАУ) соответствует аминокислота тирозин, триплету (АУА) – изолейцин, триплету (ЦГУ) – аргинин, триплету (АЦГ) – треонин, триплету (ЦГЦ) – аргинин, триплету (ГУА) – валин, триплету (УАЦ) – тирозин.

Таким образом, порядок аминокислот в участке молекулы белка будет иметь вид:

тирозин – изолейцин – аргинин – треонин – аргинин – валин – тирозин 

2. Транскрипция и трансляция данного фрагмента гена после мутации

а) транскрипция данного фрагмета гена после мутации, получим:

цепочка ДНК –   А Т А Т А Т Г Ц Ц Т Г Ц Г Ц Г Ц А Т А Т Г Т А Ц,
молекула иРНК – У А У А У А Ц Г Г А Ц Г Ц Г Ц Г У А У А Ц А У Г.

б) Трансляция данного фрагмета гена после мутации, получим:

молекула иРНК – УАУ АУА ЦГГ АЦГ ЦГЦ ГУА УАЦ  А У Г

По таблице генетического кода (иРНК) находим порядок аминокислот в белковой молекуле, получим: триплету (УАУ) соответствует аминокислота тирозин, триплету (АУА) – изолейцин, триплету (ЦГГ) – аргинин, триплету (АЦГ) – треонин, триплету (ЦГЦ) – аргинин, триплету (ГУА) – валин, триплету (УАЦ) – тирозин.

Таким образом, порядок аминокислот в участке молекулы белка после мутации будет иметь вид:

тирозин – изолейцин – аргинин – треонин – аргинин – валин – тирозин 

Вывод:
Данная мутация, приведшая к замене в девятом положении данной последовательности А на Ц, не приводит к нарушению первичной структуры полипептида. Структура полипептида как до мутации так и после мутации имеет вид:

тирозин – изолейцин – аргинин – треонин – аргинин – валин – тирозин.
 

Задача 93. Последовательность нуклеотидов на иРНК ЦГГГГЦУУЦУАГААЦГАУГАГ. Укажите соответствующий этой последовательности участок гена антисмысловой нити ДНК, а также фрагмент белка, соответствующий данному участку ДНК.

Решение:

В соответствии с принципом комплементарности азотистым основаниям кодонов иРНК соответствуют определеные коды ДНК. При этом напротив цитозина иРНК становится гуанин ДНК, напротив гуанина – цитозин, напротив тимина – аденин, напротив урацила – аденин. Таким образом, для решения задачи достаточно произвести замену нуклеотидов по схеме:

Ц → Г, Г → Ц, А→ У, Т → А.

Последовательности участок гена антисмысловой нити ДНК будет иметь вид:   молекула иРНК – ЦГГ ГГЦ УУЦ УАГ ААЦ ГАУ ГАГ;

цепочка ДНК –   ГЦЦ ЦЦГ ААГ АТЦ ТТГ ЦТА ЦТЦ.

Определим фрагмент белка, соответствующий данному участку ДНК

По таблице генетического кода (ДНК) находим порядок аминокислот в белковой молекуле, получим: триплету (ГЦЦ) соответствует аминокислота аргинин, триплету (ЦЦГ) – глицин, триплету (ААГ) – фенилаланин, триплету (АТЦ) – тирозин, триплету (ТТГ) – лизин, триплету (ЦТА) – аспарагиновая кислота, триплету (ЦТЦ) – глутаминовая кислота.

Таким образом, порядок аминокислот в участке молекулы белка будет иметь вид:

аргинин – глицин – фенилаланин – тирозин – лизин – аспарагиновая кислота – глутаминовая кислота.  

Источник: http://buzani.ru/zadachi/tsitologiya/1637-fragmenty-gena-zadachi-91-93

Медицина и здоровье
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: