Неизменяемые части аминокислот

Содержание
  1. Аминокислоты — что это такое и зачем они нужны?
  2. Незаменимые аминокислоты для человека и их роль
  3. К таким незаменимым или эссенциальным аминокислотам относятся:
  4. есть также частично заменимые, образующиеся из аминокислот, получаемых с едой:
  5. остальные десять из основных аминокислот называются заменимыми и легко синтезируются:
  6. незаменимые аминокислоты для человека в продуктах питания
  7. Какие продукты богаты незаменимыми аминокислотами для человека?
  8. Симптомы, которые могут свидетельствовать о недостатке аминокислот:
  9. Это может проявляться следующими признаками:
  10. Незаменимые аминокислоты для человека — препараты на их основе
  11. Аминокислоты
  12. Номенклатура аминокислот
  13. Физические свойства аминокислот
  14. Получение аминокислот
  15. Химические свойства аминокислот
  16. 1.1. Взаимодействие с металлами и щелочами
  17. 1.2. Взаимодействие с кислотами
  18. 2. Взаимодействие с азотистой кислотой
  19. 3. Взаимодействие с аминами
  20. 4. Этерификация
  21. 5. Декарбоксилирование
  22. 6. Межмолекулярное взаимодействие аминокислот
  23. Неизменяемые части аминокислот
  24. Незаменимые аминокислоты для человека список
  25. Аминокислота Валин
  26. Аминокислота Изолейцин
  27. Аминокислота Лейцин
  28. Аминокислота Фенилаланин
  29. Аминокислота Лизин
  30. Аминокислота Триптофан
  31. Аминокислота Треонин
  32. Аминокислота Метионин
  33. Аминокислота Гистидин
  34. Аминокислота Аргинин
  35. незаменимых аминокислот в продуктах таблица
  36. Как компенсируются незаменимые аминокислоты?
  37. Норма незаменимых аминокислот
  38. Как действуют незаменимые аминокислоты
  39. Последствия дефицита незаменимых аминокислот
  40. Строение аминокислот: структурные формулы и классификации
  41. Особенности строения природных аминокислот
  42. Номенклатура аминокислот
  43. Классификация аминокислот
  44. Правые и левые аминокислоты
  45. Классификация аминокислот | Химия онлайн
  46. I. Классификация по взаимному положения функциональных групп
  47. II. Классификация по строению бокового радикала (функциональным группам)
  48. III. Классификация по полярности бокового радикала (по Ленинджеру)
  49. IV. Классификация по кислотно-основным свойствам
  50. V. По числу функциональных групп
  51. VI.Биологическая классификация(по способности синтезироваться в организме человека и животных)

Аминокислоты — что это такое и зачем они нужны?

Неизменяемые части аминокислот

Какую роль играют незаменимые аминокислоты для человека, его здоровья и долголетия?

Одну из самых главных. Аминокислоты поддерживают азотистое равновесие, от чего зависит нормальное развитие и работу организма, являются строительным материалом для белка, без которого невозможна жизнь.

Белок питает и снабжает клетки кислородом, передаёт генетическую информацию, регулирует метаболизм, работу мышц и нервной системы.

Некоторые аминокислоты синтезируются человеком, но есть и такие, которые мы можем получить только извне.

Их и называют незаменимыми, о них и поговорим подробнее.

  • Незаменимые аминокислоты для человека и их роль
  • Незаменимые аминокислоты  в продуктах
  • Незаменимые аминокислоты — препараты на их основе

Незаменимые аминокислоты для человека и их роль

Человеческий организм не имеет возможности синтезировать часть необходимых нам аминокислот.

Поэтому мы вынуждены добывать их из белковой пищи, которую в процессе переваривания ферменты разлагают до аминокислот, участвующих в выработке собственных белков организма.

К таким незаменимым или эссенциальным аминокислотам относятся:

  • лейцин
  • фенилаланин
  • лизин
  • валин
  • триптофан
  • изолейцин
  • метионин
  • треонин

есть также частично заменимые, образующиеся из аминокислот, получаемых с едой:

особенно они нужны детям, чтобы не возникало проблем с ростом и развитием. взрослый организм уже синтезирует их сам.

некоторые незаменимые аминокислоты необходимы для выработки так называемых условно заменимых.

без метионина не образуется цистеин, а для выработки тирозина нужен фенилаланин.

остальные десять из основных аминокислот называются заменимыми и легко синтезируются:

  • аспарагин
  • аспарагиновая кислота
  • глицин
  • серин
  • глутамин
  • глутаминовая кислота
  • аланин
  • гидроксипролин
  • гидроксилизин
  • пролин

формулы незаменимых для человека аминокислот можно посмотреть в учебниках по органической химии. мы же поговорим об их свойствах.

  • лейцин — помогает снизить уровень сахара, приостанавливает разрушение мышечных тканей, возникающее при усиленных физических нагрузках, стимулирует сжигание жира. совместно с изолейцином и валином участвует в процессе регенерации мышц, увеличивает выделение гормона роста, понижает уровень лейкоцитов.
  • фенилаланин — легко преодолевает препятствие между центральной нервной системой и кровеносной, поэтому помогает лечить неврологические болезни, депрессии, боли хронического характера. повышает общий эмоциональный фон, улучшает работу печени и поджелудочной железы, умственную деятельность, влияет на память и концентрацию, усиливает выработку гормонов щитовидки.
  • лизин — сильнейший борец с вирусами, особенно с герпетической и респираторными инфекциями. помогает вырабатывать антитела, укрепляет иммунитет, способствует выработке коллагена, мышечного белка, гормонов роста, делает здоровыми волосы. влияет на либидо, вместе с аскорбиновой кислотой и пролином предупреждает заболевания сосудов и сердца.
  • валин назван в честь валерианы. он обеспечивает нас энергией, способствует росту и регенерации тканей, необходим для нормального функционирования мозга, регулирует азотистый баланс, поддерживает в норме уровень серотонина, подавляет чрезмерный аппетит, снижает чувствительность к холоду, жаре, боли. его применяют для лечения рассеянного склероза.
  • триптофан — помогает бороться с бессонницей, плохим настроением, депрессией, стабилизирует аппетит, понижает уровень холестерина, расширяет сосуды, помогает синтезировать гормон роста, серотонин, ниацин или витамин в3.
  • изолейцин — необходим спортсменам, повышает выносливость, ускоряет процессы восстановления мышц, наполняет энергией, участвует в синтезе гемоглобина, регулирует уровень глюкозы.
  • метионин — незаменим для нормального пищеварения, выведения жиров и токсинов, необходим человеку для выработки креатина, повышающего выносливость. снижает уровень гистамина, соответственно помогает при различных аллергиях и болезнях суставов.
  • треонин — особенно важен детям, так как его участие необходимо для создания прочных костей, мышц, для синтеза эластина и коллагена. треонин нужен, чтобы нормально работала нервная, иммунная, кровеносная, пищеварительная системы, препятствует скоплению жиров в  печени.
  • аргинин — необходим, когда организм растёт, болеет или стареет, ведь тогда его выработка недостаточна. усиливает выработку гормона роста, омолаживает организм, стимулирует иммунитет, помогает уменьшить слой подкожного жира.
  • гистидин — принимает участие в процессе кроветворения, образовании гемоглобина, желудочного сока, усиливает либидо, препятствует появлению аллергии, аутоиммунных реакций. при его недостатке возможно развитие ревматоидного артрита, ослабление слуха.

учёные ещё не составили окончательный список незаменимых аминокислот для человека, исследования и споры по этому вопросу ведутся постоянно.

незаменимые аминокислоты для человека в продуктах питания

Аминокислоты поддерживают в норме азотистое равновесие. Азот, получаемый с едой у здорового человека при нормальном питании, равен выделяемому (мочевина, аммонийные соли).

После тяжёлой болезни или когда организм растёт, это равновесие нарушается и баланс становится положительным, то есть выводится несколько меньше азота, чем было получено.

При старении организма, во время тяжёлых болезней, при голодании или недостатке белка в рационе, баланс становится отрицательным.

Биохимия воздействия незаменимых аминокислот на человека известна, а ведь недавно мы знали о них совсем мало.

Чтобы восполнить недостаток тех или иных веществ, созданы искусственные аналоги, но всё же предпочтительней получать их в натуральном виде, питаясь сбалансированно.

Белковая пища жизненно необходима для здоровья. Наиболее полноценным белком является молоко, а вот растительный белок ему уступает по своей ценности.

Но если правильно комбинировать продукты, то можно обеспечить необходимое количество незаменимых аминокислот — например, смесь кукурузы и бобов.

Продукты содержат эти вещества не по одному, а в различных сочетаниях.

Суточную норму можно получить употребив 500 г молочных продуктов, но, кроме молока, есть и другая еда.

Какие продукты богаты незаменимыми аминокислотами для человека?

  • Лейцин: орехи, нешлифованный, бурый рис, соевая мука, чечевица, овёс, все семена.
  • Фенилаланин: молочные продукты, авокадо, бобовые, семечки и орехи. Образуется в организме при распаде аспартама — сахарозаменителя, часто используемого в продуктах пищевой промышленности.
  • Лизин: сыр, молочные продукты, пшеница, картофель.
  • Валин: все молочные продукты, соевый протеин, зерновые, грибы, арахис.
  • Триптофан: овёс, бобовые, молоко, творог, йогурт, кедровые орешки, арахис, кунжут, семечки.
  • Изолейцин: орехи, особенно миндаль, кешью, все семена, рожь, соя, горох, чечевица.
  • Метионин: чечевица, фасоль, чеснок, лук, соя, бобы, все семена, йогурт, молочные продукты.
  • Треонин: молоко, йогурт, творог, сыр, все зелёные овощи, зерновые, бобы, орехи.
  • Аргинин: тыквенные семечки, кунжут, арахис, изюм, швейцарский сыр, йогурт, шоколад.
  • Гистидин: молочные продукты, рис, пшеница, рожь, соевые бобы, чечевица, арахис.

Такая таблица незаменимых для человека аминокислот и продуктов, в которых они содержатся, поможет вам составить сбалансированный рацион.

Овощи, зелень, бобовые и зерновые, все молочные и кисломолочные продукты, сухофрукты, фрукты и ягоды, семечки и орешки.

Единой суточной нормы незаменимых аминокислот для человека не существует, всё зависит от индивидуальных потребностей и особенностей системы питания.

Совет: взрослому человеку в среднем, чтобы быть здоровым, надо не менее 0,8-4,0 г каждой незаменимой аминокислоты в день.

Детям и подросткам их требуется больше, так как организм активно растёт и развивается.

Профессиональным спортсменам, учёным, людям, перенесшим тяжёлую болезнь также необходима несколько большая доза этих веществ.

Симптомы, которые могут свидетельствовать о недостатке аминокислот:

  • Потеря аппетита
  • Общая слабость, головокружения, постоянная сонливость, потемнение в глазах
  • Ослабление иммунитета
  • Выпадение волос, ухудшение состояния кожи
  • Анемия
  • Замедление роста, задержки в развитии

Но некоторые люди могут страдать аллергией на белок, аминокислоты усваиваются очень быстро.

Тогда надо уменьшать суточную дозу.

В других случаях переизбыток может быть вызван недостатком витаминов, ведь обычно витамины нейтрализуют лишние аминокислоты, перерабатывая их в полезные вещества.

Это может проявляться следующими признаками:

  • Тошнота, изжога
  • Изменения в пигментации волос
  • Гипертония, аневризма аорты
  • Различные неполадки в работе суставов
  • Дисфункция щитовидной железы
  • Предынфарктное или предынсультное состояние

Незаменимые аминокислоты для человека — препараты на их основе

Искусственно синтезированные аминокислоты применяют для производства лекарственных средств, биологически-активных добавок, обогащают корма для животных.

  • Лейцин добавляется в различные БАДы, препараты для лечения анемии, проблем с печенью. Используется как пищевая добавка — усилитель вкуса Е641.
  • Фенилаланин используют в лечении шизофрении и болезни Паркинсона, а также для производства сахарозаменителя, используемого в производстве газированных напитков и жевательной резинки.
  • Лизином обычно обогащают продукты питания и корма для животных.
  • Валин рекомендуется при избыточном весе, бессоннице, мигренях, депрессии, сильных физических нагрузках.
  • Триптофан назначают при бессоннице, напряжении, чувстве страха, при ПМС.
  • Изолейцин применяют для лечения неврозов, дрожания рук (тремор), при стрессах, слабости, отсутствии аппетита, его добавляют в антибиотики и средства для восстановления мышц.
  • Метионином обогащают состав лекарств, которые уменьшают накопление жира печенью, способствующих её восстановлению. Для антифибротиков, препятствующих образованию рубцов, заживления эрозий и язв желудка, двенадцатиперстной кишки,  антидепрессантов.
  • Треонин назначается при травмах, ожогах, сепсисе, воспалениях кишечника, после операций, для улучшения умственной деятельности и концентрации внимания.
  • Аргинин используется для производства иммуномодуляторов, гепатопротекторов, кардиологических лекарств, питания в период реабилитации после операций, ожогов, биологически-активных добавок для профессиональных спортсменов, тяжёлоатлетов, бодибилдеров.
  • Гистидин входит в состав препаратов для лечения артритов, анемии, язв, всевозможных витаминных комплексов.

Незаменимые аминокислоты используют для наращивания мышц, восполнения запасов энергии при интенсивных тренировках.

Не стоит самому назначать себе не только лекарства, но и пищевые добавки.

Они продаются без рецепта, но никто не застрахован от появления проблем в случае бесконтрольного приёма таких препаратов.

Лучше всего употреблять эти полезнейшие для здоровья вещества в натуральном виде, ведь столько разных продуктов богаты ими!

Если питаться полноценно здоровой натуральной пищей, вести активный образ жизни, а не валяться на диване, то пищевые добавки и лекарства не понадобятся.

Ваш организм будет функционировать на отлично и никаких сбоев в его работе не будет.

Источник

Источник: https://zen.yandex.ru/media/id/5ab903a348c85ee6a742bc7a/aminokisloty--chto-eto-takoe-i-zachem-oni-nujny-5abb7fe28139baba31d252fa

Аминокислоты

Неизменяемые части аминокислот

Аминокислоты – органические бифункциональные соединения, в состав которых входят карбоксильные группы –СООН и аминогруппы –NH2.

Природные аминокислоты можно разделить на следующие основные группы:

1) Алифатические предельные аминокислоты (глицин, аланин)NH2-CH2-COOH глицинNH2-CH(CH3)-COOH аланин
2) Серосодержащие аминокислоты (цистеин)цистеин
3) Аминокислоты с алифатической гидроксильной группой (серин)NH2-CH(CH2OH)-COOH серин
4) Ароматические аминокислоты (фенилаланин, тирозин)фенилаланинтирозин
5) Аминокислоты с двумя карбоксильными группами (глутаминовая кислота)HOOC-CH(NH2)-CH2-CH2-COOHглутаминовая кислота
6) Аминокислоты с двумя аминогруппами (лизин)CH2(NH2)-CH2-CH2-CH2-CH(NH2)-COOHлизин

Номенклатура аминокислот

  • Для природных α-аминокислот R-CH(NH2)COOH применяются тривиальные названия: глицин, аланин, серин и т. д.
  • По систематической номенклатуре названия аминокислот образуются из названий соответствующих кислот прибавлением приставки амино- и указанием места расположения аминогруппы по отношению к карбоксильной группе:
2 – Аминобутановая кислота3-Аминобутановая кислота
  • Часто используется также другой способ построения названий аминокислот, согласно которому к тривиальному названию карбоновой кислоты добавляется приставка амино- с указанием положения аминогруппы буквой греческого алфавита.
α-Аминомасляная кислотаβ-Аминомасляная кислота

Физические свойства аминокислот

Аминокислоты – твердые кристаллические вещества с высокой температурой плавления. Хорошо растворимы в воде, водные растворы хорошо проводят электрический ток.

Получение аминокислот

  • Замещение галогена на аминогруппу в соответствующих галогензамещенных кислотах:
  • Восстановление нитрозамещенных карбоновых кислот (применяется для получения ароматических аминокислот):

Химические свойства аминокислот

При растворении аминокислот в воде карбоксильная группа отщепляет ион водорода, который может присоединиться к аминогруппе. При этом образуется внутренняя соль, молекула которой представляет собой биполярный ион:

1. Кислотно-основные свойства аминокислот

 Аминокислоты — это амфотерные соединения.

Они содержат в составе молекулы две функциональные группы противоположного характера: аминогруппу с основными свойствами и карбоксильную группу с кислотными свойствами.

Водные растворы аминокислот имеют нейтральную, щелочную или кислую среду в зависимости от количества функциональных групп.

Так, глутаминовая кислота образует кислый раствор (две группы -СООН, одна -NH2), лизин — щелочной (одна группа -СООН, две -NH2).

1.1. Взаимодействие с металлами и щелочами

Как кислоты (по карбоксильной группе), аминокислоты могут реагировать с металлами, щелочами, образуя соли:

1.2. Взаимодействие с кислотами

По аминогруппе аминокислоты реагируют с основаниями:

2. Взаимодействие с азотистой кислотой

Аминокислоты способны реагировать с азотистой кислотой.

Например, глицин взаимодействует с азотистой кислотой:

3. Взаимодействие с аминами

Аминокислоты способны реагировать с аминами, образуя соли или амиды.

4. Этерификация

Аминокислоты могут реагировать со спиртами в присутствии газообразного хлороводорода, превращаясь в сложный эфир:

Например, глицин взаимодействует с этиловым спиртом:

5. Декарбоксилирование

Протекает при нагревании аминокислот с щелочами или при нагревании.

Например, глицин взаимодействует с гидроксидом бария при нагревании:
Например, глицин разлагается при нагревании:

6. Межмолекулярное взаимодействие аминокислот

 При взаимодействии аминокислот образуются пептиды.  При взаимодействии двух α-аминокислот образуется дипептид.

Например, глицин реагирует с аланином с образованием дипептида (глицилаланин):

Фрагменты молекул аминокислот, образующие пептидную цепь, называются аминокислотными остатками, а связь CO–NH — пептидной связью.

Источник: https://chemege.ru/aminokisloty/

Неизменяемые части аминокислот

Неизменяемые части аминокислот

Под заголовком аминокислоты необходимые человеку мы подразумеваем именно незаменимые аминокислоты. О них надо знать каждому человеку, который привык заботиться о здоровье.

В группу незаменимых аминокислот включены такие вещества, которые человеческий организм не в состоянии производить самостоятельно. Но все же эти соединения требуются для корректной работы всех органов и систем. Поэтому рекомендуется получать их из полезных продуктов.

Посредством правильного питания, человек может регулярно пополнять запасы незаменимых аминокислот, а значит, всегда быть сильным, здоровым и красивым.

Незаменимые аминокислоты для человека список

Большинство авторитетных источников говорит про 8 незаменимых аминокислот. Они достаточно хорошо изучены. А по другим данным существует 10 незаменимых аминокислот. Наша задача — кратко и по делу сказать обо всех видах. Итак, к незаменимым аминокислотам относятся:

  • Валин;
  • Фенилаланин;
  • Изолейцин;
  • Триптофан;
  • Гистидин (современная наука не причисляет Гистидин к спектру незаменимых аминокислот, поэтому правильнее называть ее частично-заменимой);
  • Лейцин;
  • Метионин;
  • Аргинин (обратите внимание, Аргинин, по сути, выступает частично заменимым в организме веществом, так как образуется только на основе поступающих пищевых аминокислот, но не стоит причислять Аргинин к условно-заменимым аминокислотам, появляющимся из не поступающих с продовольствием незаменимых аминокислот, а также отметим, что Аргинин — это важное вещество для здоровья и гармоничного развития в детском возрасте);
  • Треонин;
  • Лизин.

Указанные аминокислоты для каждого человека чрезвычайно важны с рождения и в любом возрасте. С их помощью можно поддерживать идеальное состояние тела, быть выносливым и успешным в спорте, иметь крепкое здоровье, отличное настроение, психическое здоровье и всегда молодую внешность.

Выше названы известные в современной науке незаменимые аминокислоты. Достоверная информация на тему их содержания в мясных, молочных и растительных продуктах представлена ниже.

Аминокислота Валин

Лучшие пищевые источники Валина:

  • зерновая продукция;
  • молочная продукция;
  • бобовые культуры;
  • грибы;
  • орешки — арахис;
  • мясная продукция.

Аминокислота Изолейцин

Доступные продуктовые источники Изолейцина:

  • мясная продукция — куриное филе;
  • ржаные продукты;
  • бобовое растение соя;
  • орешки — кешью и миндаль;
  • субпродукты — печень животных;
  • нут — турецкий горошек;
  • яйца;
  • разные виды рыбы;
  • практически все разновидности семян;
  • чечевица.

Аминокислота Лейцин

Продукты-поставщики Лейцина:

  • бурый рис — это очень полезный неочищенный рис, подходит для диет, здорового и спортивного питания;
  • яйца;
  • орешки;
  • рыба;
  • чечевица;
  • куриное филе;
  • овес;
  • разные виды семечек.

Аминокислота Фенилаланин

Из каких продуктов можно получить незаменимую аминокислоту Фенилаланин:

  • бобовые культуры;
  • молоко;
  • натуральный творог;
  • разные виды орешков;
  • мясо — куриное филе и говядина;
  • различные сорта рыбы;
  • аспартам (известно, что Фенилаланин появляется в организме посредством расщепления синтетического аналога сахара Аспартам, этот заменитель сегодня широко применяется в пищевой индустрии).

Аминокислота Лизин

Перечислим, в какой еде выше процент Лизина:

  • амарант (диетический белковый продукт);
  • рыбные блюда;
  • пшеница;
  • разные сорта мяса;
  • молочная продукция;
  • многие сорта орехов.

Аминокислота Триптофан

Из какой пищи можно получить больше Триптофана:

  • куриное филе;
  • бобовые культуры;
  • рыба;
  • овес;
  • творог (помните, что творог полезные аминокислоты содержит только в том случае, если он натуральный и очень качественный);
  • сухие финики;
  • филе индейки;
  • йогурты;
  • орешки — арахис и кедровые;
  • кунжутные семечки;
  • молоко.

Аминокислота Треонин

Лучшие продуктовые источники Треонина:

  • яйца;
  • орешки;
  • молочная продукция;
  • бобы.

Аминокислота Метионин

Поставщики Метионина из пищи:

  • бобы;
  • разные виды рыбы;
  • бобовое растение соя;
  • натуральное молоко;
  • фасоль;
  • мясные блюда;

Аминокислота Гистидин

Источники Гистидина:

  • орешки — арахис;
  • мясо — филе говядины и курицы;
  • соевые бобы;
  • бобовое растение чечевица;
  • свинина — вырезка;
  • рыба — лосось и тунец.

Аминокислота Аргинин

Хорошие продовольственные источники Аргинина:

  • 2 сорта мяса — говядина, свинина;
  • орешки — арахис;
  • семена — тыквенные семечки и кунжутное семя;
  • йогурт;
  • сыр (считается, что Аргинином богат именно швейцарский сыр).

Мы вкратце разобрали незаменимые аминокислоты, назвав богатейшие продуктовые источники. Из списков выше понятно, что несложно сохранять правильный баланс аминокислот в теле.

Незаменимые аминокислоты реально необходимы, чтобы корректно работал организм, поэтому каждый из нас должен заботиться о рациональном питании в соответствии с потребностями своего организма. Как видим, незаменимые аминокислоты в мясе находятся.

Они есть и во многих других повседневных, привычных для большинства из нас, продуктах, которые легко приобрести в магазине. Это растительные и животные продукты.

незаменимых аминокислот в продуктах таблица

Чтобы узнать, сколько аминокислот в каждом продукте содержится, не нужно быть ученым. Сегодня такая информация общедоступна. Полезнейшие незаменимые аминокислоты таблица наглядно отражает, сохраните ее для себя, она будет вам полезной. В нашей таблице указано, сколько грамм аминокислот заключено в 100-граммовой порции каждого вида пищи.

Как компенсируются незаменимые аминокислоты?

Как мы знаем, человеческий организм неспособен вырабатывать ни одну аминокислоту из разряда незаменимых. Интересно, что дефицит этих полезных веществ иногда немного компенсируется.

Первый пример: Глутаминовая кислота отчасти заменяет аминокислоту Аргинин.

Второй пример: для снижения потребности в аминокислоте Метионине, требуется Гомоцистеин вкупе с некоторым количеством особых веществ. Их называют доноры метильных групп. Считается, что доноры метильных групп способствуют замедлению старения организма. К этой группе относя метионин, холин и бетаин.

Если в рационе недостает аминокислоты Фенилаланина, можно отчасти компенсировать этот дефицит употреблением аминокислоты Тирозина (Тирозин — это заменимая аминокислота).

Норма незаменимых аминокислот

Изучая состав полезных продуктов, вы поймете, что аминокислоты в них находятся не по одному виду, в наборе. То есть один продукт питания может содержать сразу несколько аминокислот. Запомните, что животная пища включает 9 ценнейших незаменимых аминокислот, поэтому нельзя исключать ее из рациона надолго.

Чтобы организм получил суточную дозу незаменимых аминокислот, достаточно употребить 500 г качественного кисломолочного продукта или скушать 300 г хорошей говядины. В нашей таблице указана норма потребления человеком незаменимых аминокислот. Приведено оптимальное количество аминокислот в граммах на одни сутки, а также даны примеры и требуемый объем пищи.

Как действуют незаменимые аминокислоты

Каждое вещество реализует в человеческом организме определенные функции, в результате все органы и системы слаженно работают:

  • Валин — генератор энергии, поддерживает азотный обмен, регенерирует ткани, организует мышечный метаболизм;
  • Гистидин — сохраняет здоровье суставов, регулирует рост тканей и подстегивает процессы регенерации, поддерживает нормальный слух;
  • Лейцин — поставщик энергии, защитник мышц, регенерирует все ткани тела, снижает сахар в составе крови, добавляет гормона роста;
  • Аргинин — снижает запасы жира и увеличивает мышцы, стимулирует производство гормона роста, антираковое вещество, очищает печень, улучшает потенцию, снижает холестерин и давление;
  • Изолейцин — способствует нормальному уровню гемоглобина, повышает выносливость, контролирует сахар в составе крови, помогает восстанавливать мышцы;
  • Фенилаланин — трансформируется в Тирозин, снижает аппетит, обезболивает, улучшает память, повышает обучаемость;
  • Треонин — способствует естественному производству эластина с коллагеном, улучшает иммунную защиту, задействован в обмене жиров, белков, защищает печень от обрастания жиром;
  • Лизин — защищает от генитального герпеса, помогает усвоению кальция, предупреждает остеопороз и атеросклероз, повышает у женщин либидо, лечит волосы, действует как анаболик для роста мышц, улучшает память и эрекцию;
  • Триптофан — задействован в выработке серотонина, ослабляет разрушительное действие никотина, снижает аппетит, поднимает настроение, повышает производство гормона роста, налаживает сон;
  • Метионин — способствует переработке, а не отложению жиров, улучшает качество пищеварения, спасает беременных от токсикоза, используется при лечении артрита, аллергии, остеопороза, снижает вредное влияние радиации, предупреждает отложение жира на артериях и печени.

Последствия дефицита незаменимых аминокислот

Если организм постоянно недополучает аминокислоты, это приводит к множеству негативных изменений, среди них:

  • повышенный риск травм;
  • ухудшение спортивного прогресса;
  • снижение иммунной защиты;
  • замедление роста, дефицит массы тела;
  • сбои в обмене веществ.

Незаменимые аминокислоты свойства имеют разные, каждая из них реализует отдельную полезную функцию. Все вещества вкупе помогают человеческому организму нормально работать без сбоев. Данный пост содержит название незаменимых аминокислот и обозначает основные пищевые источники.

Информация предназначена для ознакомления и проверена специалистами. Вы уже поняли, незаменимые аминокислоты организм получает при употреблении определенных продуктов. Но можно также употреблять БАД. Сегодня в продаже есть много достойных внимания добавок с аминокислотами.

Источник: zen.yandex.ru

Источник: https://naturalpeople.ru/neizmenjaemye-chasti-aminokislot/

Строение аминокислот: структурные формулы и классификации

Неизменяемые части аминокислот

Строение основных аминокислот: 20 «магических», входящих в состав белка. Структура. Классификации.  Таблицы с формулами. Название и международные сокращения протеиногенных аминокислот.  С вами я, Галина Баева, 20 «магических» аминокислот и красивые таблицы со структурными формулами природных аминокислот.

Природные аминокислоты — это структурные единицы (мономеры) белков. В состав белков входят всего 20 т.н. «магических» аминокислот, которые также называются протеиногенными. Все они имеют сходное строение.

Кроме протеиногенных аминокислот в организме присутствуют и непротеиногенные, которые выполняют различную работу, в основном это промежуточные соединения в биохимическом конвейере, как например, орнитин, сигнальные молекулы, как β-аланин или нейромедиаторы, как ГАМК.

Особенности строения природных аминокислот

Строение аминокислот тесно связано с их функциями. Сходные по химической структуре вещества делают сходную работу. Попробуем разобраться, чтобы потом не путаться в аннотациях к препаратам.

Все аминокислоты слеплены по одному лекалу.

Голова – аминный остаток, содержащий азот N.

Углеродный скелет, состоящий из цепочки атомов углерода (в простейшем случае – один углерод, к которому «спереди» прицеплен аминный остаток, а сзади – карбоновый хвост)

Хвост – остаток карбоновой кислоты – СООН

Сбоку к углеродному скелету может быть присоединена еще какая-нибудь химическая группировка, которая придает данному веществу особые свойства.

Углеродная цепочка вместе с кислотным хвостом, присоединенная к аминной голове, называется мудреным словом «алифатический радикал».

Номенклатура аминокислот

Углеродная цепочка (скелет) может состоять как из 1 атома углерода, так и из нескольких. В последнем случае имеет значение, к какому атому углерода, начиная счет от карбоксильной группы, присоединится аминная голова.

Это может быть как 1-ый атом углерода, так и 2-ой, 3-ий и далее.

Химики договорились обозначать атомы углерода не цифрами, а буквами греческого алфавита: α – 1-ый атом углерода, начиная с карбоксильного хвоста, β— 2-ой, γ — 3-й, и т.д.

Если аминогруппа присоединяется к углероду в α-положении, такую аминокислоту называют α-аминокислотой, соответственно, если аминогруппа присоединена в β-положении — то это β-аминокислота, если в γ — то γ -аминокислота.

Все 20 природных протеиногенных аминокислот относятся к группе α -аминокислот.

Из β — аминокислот наиболее известен β-аланин, а из γ-аминокислот наиболее известна γ-аминомасляная кислота (ГАМК).   Их структурные формулы приведены ниже.

Классификация аминокислот

Существует несколько классификаций аминокислот:

  1. В зависимости от строения алифатического радикала, аминокислоты подразделяются на следующие группы:
  • Просто аминокислоты с алифатическим радикалом, т.е. такие, у которых углеродная цепочка не содержит дополнительных затей. Их называют МоноАминоМоноКарбоновые:  глицин и аланин
  • Аминокислоты с разветвленной боковой цепью, у которых углеродный скелет образует боковые вилки: валин, лейцин, изолейцин. Изолейцин по химическому составу не отличим от лейцина, но его углеродный скелет по-другому загнут, т.е. он является стереоизомером.  Иногда его выделяют в отдельную аминокислоту, а иногда – нет. Аминокислоты с разветвленной боковой цепью тоже относятся к группе МоноАминоМоноКарбоновых аминокислот.
  • Аминокислоты, у которых в алифатическом радикале имеются разные группировки:

Спиртовая  – ОН.   Их называют ОксиМоноАминоМоноКарбоновые: серин и треонин

Карбоксильная, т.е. второй кислотный хвост. Это МоноАминоДиКарбоновые аминокислоты: аспарагиновая кислота (аспартат) и глутаминовая кислота (глутамат). Их называют еще Кислые аминокислоты, этакое «масло масляное».

Амидная. Карбоксильный хвост отрастил себе вторую аминную голову: аспарагин и глутамин. Кажется, понятным, что это производные соответственно аспартата и глутамата. Их называют АмидыМоноАминоДиКарбоновых аминокислот

Аминная.  Вторая аминная голова присоединилась к углеродному скелету: лизин

Гуанидиновая: дополнительные аминные вставки — аргинин

Лизин и Аргинин относят также к группе ДиАминоМоноКарбоновых аминокислот, ибо у них есть по второй аминной группе.

Поскольку эти аминокислоты в нейтральной среде (вода, рН=7), проявляют щелочные (основные) свойства, повышая водородный показатель (рН становится › 7), то их относят к группе Основных аминокислот

Серосодержащие аминокислоты. Имеют в радикале атом серы S:  цистеин, метионин

Аминокислоты, содержащие ароматический радикал– углеродное колечко или Ароматические аминокислоты  фенилаланин, тирозин, триптофан

Аминокислоты с гетероциклическим радикалом – колечко с атомом азота вместо углерода, поэтому он «гетеро» — «разнообразный»: триптофан и гистидин.

Нетрудно заметить, что триптофан входит в группу как ароматических аминокислот, так и в группу аминокислот с гетероциклическим радикалом, а все потому, что у него есть как гетороциклический радикал, так и ароматический.

Иминокислоты – углеродный скелет не вытянут в цепочку, а замкнут в колечко, из которого торчат аминная голова и рядом кислотный хвост: пролин и оксипролин

2. Классификация,  в основу которой положена полярность алифатического радикала.

  • Неполярные (гидрофобные) аминокислоты. Они имеют неполярные связи между атомами C-C, C-H. Это глицин, аланин, валин, лейцин, изолейцин, пролин, триптофан — 8 аминокислот
  • Полярные незаряженные (гидрофильные) аминокислоты. Они имеют полярные связи между атомами С-О, C-N, O-H, S-H. Это серин, аспарагин, глутамин, треонин, метионин — 5 аминокислот
  • Полярные отрицательно-заряженные аминокислоты.  У них в радикале присутствуют группы, которые в водной среде (рН = 7) заряжены отрицательно, т.е. они выступают как отрицательно-заряженный ион (анион). Это аспарагиновая и глутаминовая кислоты, тирозин, цистеин — 4 аминокислоты
  • Полярные положительно-заряженные аминокислоты. У них в радикале присутствуют группы, которые в водной среде (рН=7) заряжены положительно, т.е. они выступают как положительно-заряженный ион (катион). Это лизин, аргинин, гистидин — 3 аминокислоты.

Чем больше в белке аминокислот, обладающих полярностью, тем выше способность белка к химическим реакциям, т.е. его реактогенность. С реактогенностью белка непосредственно связаны его функции.

Белки соединительной ткани, например кератин, входящий в состав волос и ногтей, имеет мало полярных аминокислот.

Напротив, ферменты — белки-катализаторы биохимических реакций, обладают аминокислотным составом с множеством полярных групп.

3. Классификация по отношению к водородному показателю (рН)

  • Аминокислоты, обладающие нейтральными свойствами с рН 5,97 – 6,02.  Это  глицин, аланин, серин, валин, лейцин, изолейцин,треонин, цистин, метионин — 9 аминокислот.  Они имеют одну аминную голову и один карбоксильный хвост
  • Аминокислоты, обладающие слабокислыми свойствами рН 3,0 – 5,7. Это аспарагиновая и глутаминовая кислоты. Они имеют одну аминную голову, но два карбоксильных хвоста, поэтому их называют «кислотами».
  • Аминокислоты, обладающие щелочными свойствами с  рН 9,7 – 10,7.  У них две аминные головы и один карбоксильный хвост. Это лизин, аргинин, гистидин.

4. Классификация по способности к синтезу в организме человека и животных.

  • Заменимые аминокислоты: глицин, серин, аланин, аспарагиновая кислота, аспарагин, глутаминовая кислота, глутамин, пролин
  • Условно-заменимые аминокислоты: аргинин, гистидин, тирозин, цистеин
  • Незаменимые аминокислоты: валин, лейцин, изолейцин, треонин, лизин, триптофан, фенилаланин, метионин

Подробнее о них рассказывается здесь:  Аминокислоты заменимые и незаменимые: где взять.

5. Классификация аминокислот по путям биосинтеза.

В живых организмах аминокислоты могут производится (синтезироваться) из других соединений. Путь биосинтеза — это последовательность химических реакций, которые обусловлены наследственной (генетической) матрицей. Он записан в генетическом коде и обусловлен наличием ферментов, запускающих данные реакции.

Биосинтез идет не хаотично, а количество исходных и промежуточных соединений ограничено. Так из всего многообразия природных аминокислот для синтеза белка используются только 20.

Соответственно, исходные и промежуточные соединения на путях биосинтеза отдельных аминокислот образуют кластеры или семейства, где соединения могут преобразовываться друг в друга.

  • Семейство аспартата: аспарагиновая кислота (аспартат), аспарагин, изолейцин, лизин, треонин, метионин
  • Семейство глутамата: глутаминовая кислота (глутамат), глутамин, пролин, аргинин
  • Семейство пирувата: аланин, валин, лейцин
  • Семейство серина: серин, глицин, цистеин
  • Семейство пентоз: гистидин, триптофан, фенилаланин, тирозин
  • Семейство шикимата: триптофан, фенилаланин, тирозин

Надо сказать, что данные пути метаболизма реализуются в биологических системах, но не все они имеются в организме человека. Так высшие животные и человек не способны синтезировать ароматическое кольцо, поэтому путь шикимата — это не для нас. Аналогично с другими путями синтеза незаменимых аминокислот. Для наглядности незаменимые аминокислоты выделены жирным шрифтом.

6. Классификация аминокислот по путям катаболизма

Катаболизм — процесс распада, противоположен анаболизму или процессу синтеза. В организме катаболизм также обусловлен генетической программой и набором ферментов.

Конечным итогом деградации аминокислот является аммиак, вода и углекислый газ, а также выделяется энергия в виде тепла или связанная в молекулах АТФ.

В зависимости от промежуточных соединений, дающих энергию, аминокислоты подразделяются на следующие группы:

  • Глюкогенные: дающие метаболиты (промежуточные соединения), из которых может быть синтезирована глюкоза: глицин, аланин, серин, треонин, валин, аспарагиновая кислота, аспарагин, глутаминовая кислота, глутамин, пролин, аргинин, гистидин, цистин, метионин
  • Кетогенные: распадающиеся до ацетоацетилКоА и ацетилКоА, из которых могут быть синтезированы кетонные тела: лизин, лейцин
  • Промежуточные: при распаде этих аминокислот образуются метаболиты обоих типов: изолейцин, триптофан, фенилаланин, тирозин

Подробнее о глюкогенных и кетогенных аминокислотах можно прочитать здесь: Гликогенные аминокислоты

Правые и левые аминокислоты

В зависимости от прикрепления аминогруппы по отношению к карбоксильному хвосту в углеродной цепочке, аминокислоты могут быть «правыми» или «левыми», иначе говоря, их относят к D- или L- изомерам. Такие формы называют оптически активными, они не отличаются по химическому составу, но в пространстве относятся друг другу, как левая и правая рука.

В белковые молекулах присутствуют только L (левые) -изомеры аминокислот, правые (D) -изомеры могут обладать особыми свойствами и выступать как медиаторы, т.е. сигнальные молекулы, но чаще они образуют балласт. В обычных продуктах питания D-аминокислот практически нет.

Они образуются при химическом синтезе и могут встречаться в искусственных протеинах, используемых в спортивном питании или в качестве биологически-активных добавок к пище. D-аминокислоты с трудом расщепляются ферментами, ибо они не физиологичны.

В печени и почках содержится особый фермент — оксидаза D-аминокислот, предполагают, что она превращает нефизиологичные правые аминокислоты в физиологичные левые. Количество ее невелико, т.к. обычно в пище содержится очень мало D-аминокислот.

При химическом синтезе образуется равное количество D- и L- изомеров, но в синтезе белка участвуют аминокислоты только L – ряда. Это следует учитывать лицам, принимающим препараты аминокислот: L-аминокислоты будут существенно дороже из-за необходимости их выделения из смеси, но эффект от их применения будет существенно выше

Читайте далее о том, что делает в организме каждая аминокислота. Поверьте, им есть, чем заняться. С вами была Галина Батуро. Делитесь информацией в соц.сетях, оставляйте комментарии.

Источник: https://zaryad-zhizni.ru/stroenie-osnovnyih-aminokislot/

Классификация аминокислот | Химия онлайн

Неизменяемые части аминокислот

Аминокислоты классифицируют по следующим структурным признакам.

I. Классификация по взаимному положения функциональных групп

В зависимости от взаимного расположения амино- и карбоксильной групп аминокислоты подразделяют на α- , b- , g- , d- , e- и т. д.

Греческая буква при атоме углерода обозначает его удаленность от карбоксильной группы.

II. Классификация по строению бокового радикала (функциональным группам)

Алифатические аминокислоты

Моноаминомонокарбоновые кислоты: глицин, аланин, валин, изолейцин, лейцин.

Оксимоноаминокарбоновые кислоты (содержат-ОН-группу): серин, треонин.

Моноаминодикарбоновые кислоты (содержат СООН-группу): аспартат, глутамат (за счёт второй карбоксильной группы несут в растворе отрицательный заряд).

Амиды моноаминодикарбоновых кислоты (содержат NH2СО-группу): аспарагин, глутамин.

Диаминомонокарбоновые кислоты (содержат NH2-группу): лизин, аргинин (за счёт второй аминогруппы несут в растворе положительный заряд).

Серусодержащие кислоты: цистеин, метионин.

Ароматические аминокислоты: фенилаланин, тирозин, триптофан.

Гетероциклические аминокислоты: триптофан, гистидин, пролин.

Иминокислоты: пролин.

Важнейшие α–аминокислоты

III. Классификация по полярности бокового радикала (по Ленинджеру)

Выделяют четыре класса аминокислот, содержащих радикалы следующих типов.

Гидрофобные аминокислоты располагаются внутри молекулы белка, тогда как гидрофильные – на внешней поверхности, что делает гидрофильными и хорошо растворимыми в воде молекулы белка.

Благодаря этому свойству белки хорошо связывают воду, удерживая жидкость в крови, в межклеточном пространстве и внутри клеток.

1. Неполярные (гидрофобные)

К неполярным (гидрофобным) относятся аминокислоты с неполярными  R-группами и одна серусодержащая аминокислота:

— алифатические: аланин, валин, лейцин, изолейцин

— ароматические: фенилаланин, триптофан.

— серусодержащие: метионин

— иминокислота: пролин.

2. Полярные незаряженные

Полярные незаряженные аминокислоты по сравнению с неполярными лучше растворяются в воде, более гидрофильны, так как их функциональные группы образуют водородные связи с молекулами воды.

К ним относятся аминокислоты, содержащие:

— полярную ОН-группу (оксиаминокислоты): серин, треонин  и тирозин

—  HS-группу: цистеин

— амидную  группу: глутамин,  аспарагин

— и глицин (R-группа глицина, представленная одним атомом водорода, слишком мала, чтобы компенсировать сильную полярность a-аминогруппы и a-карбоксильной группы).

3. Заряженные отрицательно при рН-7 (кислые)

Аспарагиновая и глутаминовая кислоты относятся к отрицательно заряженным аминокислотам.

Они содержат по две карбоксильные и по одной аминогруппе, поэтому в ионизированном состоянии их молекулы будут иметь суммарный отрицательный заряд:

4. Заряженные положительно при рН-7 (основные)

К положительно заряженным аминокислотам принадлежат лизин, гистидин и аргинин.

В ионизированном виде они имеют суммарный положительный заряд:

В зависимости от характера радикалов природные аминокислоты также подразделяются на нейтральные, кислые и основные. К нейтральным относятся неполярные и полярные незаряженные, к кислым – отрицательно заряженные, к основным – положительно заряженные.

IV. Классификация по кислотно-основным свойствам

В зависимости от количества функциональных групп различают кислые, нейтральные и основные аминокислоты.

Основные

Аминокислоты, в которых число аминогрупп превышает число карбоксильных групп, называют основными аминокислотами: лизин, аргинин, гистидин:

Кислые

Если в аминокислотах имеется избыток кислотных групп, их называют кислыми аминокислотами: аспарагиновая и глутаминовая кислоты:

Все остальные аминокислоты относятся к нейтральным.

V. По числу функциональных групп

Аминокислоты по числу функциональных групп можно разделить моноаминомонокарбоновые, моноаминодикарбоновые, диаминомонокарбоновые:

VI.Биологическая классификация (по способности синтезироваться в организме человека и животных)

Заменимые аминокислоты – десять из 20 аминокислот, входящих в состав белков, могут синтезироваться в организме человека. К ним относятся: глицин (гликокол), аланин, серин, цистеин, тирозин, аспарагиновая и глутаминовая кислоты, аспарагин, глутамин, пролин.

Незаменимые аминокислоты (8 аминокислот) – не могут синтезироваться в организме человека и животных и должны поступать в организм в составе белковой пищи.

Абсолютно незаменимых аминокислот восемь: валин, изолейцин, лейцин, треонин, метионин, лизин, фенилаланин, триптофан.

Незаменимые аминокислоты входят часто в состав пищевых добавок, используются в качестве лекарственных препаратов.

Условно незаменимые (2 аминокислоты) — синтезируются в организме, но в недостаточном количестве, поэтому частично должны поступать с пищей. Такими аминокислотами являются  гистидин, аргинин.

Для детей также незаменимыми являются гистидин и аргинин.

Для человека одинаково важны оба типа аминокислот: и заменимые, и незаменимые. Большая часть аминокислот идет на построение собственных белков организма, но без незаменимых аминокислот организм существовать не сможет.

При недостатке каких-либо аминокислот в организме человека в течение непродолжительного времени могут разрушаться белки соединительной ткани, крови, печени и мышц, а полученный из них «строительный материал» — аминокислоты идут на поддержание нормальной работы наиболее важных органов — сердца и мозга.

Дефицит аминокислот приводит к ухудшению аппетита, задержке роста и развития, жировой дистрофии печени и другим тяжелым нарушениям.

При этом наблюдается снижение аппетита, ухудшение состояния кожи, выпадение волос, мышечная слабость, быстрая утомляемость, снижение иммунитета, анемия.

Избыток аминокислот может вызвать развитие тяжелых заболеваний, особенно у детей и в юношеском возрасте.

Наиболее токсичными являются метионин (провоцирует риск развития инфаркта и инсульта), тирозин (может спровоцировать развитие артериальной гипертонии, привести к нарушению работы щитовидной железы) и гистидин (может способствовать возникновению дефицита меди в организме и привести к заболеваниям суставов, ранней седине, тяжелым анемиям).

В условиях нормального функционирования организма, когда присутствует достаточное количество витаминов (В6, В12, фолиевой кислоты) и антиоксидантов (витамины А, Е, С и селен), избыток аминокислот не наносит вред организму.

Продукты с повышенным содержанием отдельных незаменимых аминокислот 

Качество некоторых пищевых белков относительно белков женского молока

Аминокислоты

Источник: https://himija-online.ru/organicheskaya-ximiya/aminokisloty/klassifikaciya-aminokislot.html

Медицина и здоровье
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: