Нейромоторная двигательная единица

Частная физиология центральной нервной системы

Нейромоторная двигательная единица

При создании данной страницы использовалась лекция по соответствующей теме, составленная Кафедрой Нормальной физиологии БашГМУ

Навигация:

Спинной мозг (medulla spinalis)

Спинной мозг – тяж, длиной 40-50 см. Расположен в позвоночном канале. Покрыт мягкой, паутиной и твердой оболочками. Омывается спинномозговой жидкостью.

Сегментарность строения:

  • шейный (C I-VIII),
  • грудной (Th I-XII),
  • поясничный (L I-V),
  • крестцовый (S I-V)
  • и копчиковый (Co I-II).

Состоит из белого и серого вещества.

Рога серого вещества разделяют белое вещество.

Белое вещество представлены нервными волокнами — проводящими путями и клетками нейроглии. Серое вещество — > 10 млн. тел нейронов.

В передних рогах расположены альфа- и гамма-мотонейроны (3%). В боковых рогах — вегетативные (2%). В задних рогах – промежуточные (вставочные) нейроны (95%).

В спинной мозг входят задние корешки, состоящей из афферентных (центростремительных или чувствительных волокон). Тела их нейронов, находятся в спинномозговых узлах.

Передние корешки — включают в себя двигательные эфферентные (центробежные) волокна, иннервирующие скелетные мышцы, а также вегетативные эфферентные волокна (сосудистые, секреторные и к гладкой мускулатуре).

Передний и задний корешки соединяются и образуют 31 пару спинномозговых нервов.

на новости сайта в соцсетях!

Пожалуйста, примите участие в опросах по оценке качества сайта. Важен каждый голос!

Функции спинного мозга:

  • Рефлекторная,
  • Проводниковая,
  • Анализ сенсорной информации.

I. Рефлекторная функция

Спинной мозг участвует во всех сложных двигательных реакциях организма и иннервирует всю скелетную мускулатуру, кроме мышц головы (черепные нервы).

Мышечные волокна бывают:

  • Красные:
    • сокращаются медленно,
    • долго находятся в сокращенном состоянии;
  • Белые:
    • сокращаются быстро,
    • быстро устают.

Миотатический рефлекс (греч. myo – мышца, tatis — натяжение)

Играет важную роль в поддержании тонуса равновесия. Оннаправлен против гравитационных сил.

Рецепторы двигательных систем:

  • Мышечные веретена,
  • Сухожильные органы (рецепторы) Гольджи.

Мышечное веретено – это сложный рецепторный прибор, включающий несколько тонких интрафузальных волокон, находящихся внутри веретена.

Интрафузальные волокна:

  • с ядерной сумкой,
  • с ядерной цепочкой,
  • рецепторы растяжения,
  • аннуло-спиральный путь.

Каждый сегмент спинного мозга содержит мотонейроны:

  • Альфа-мотонейроны (крупные),
  • Гамма-мотонейроны (мелкие).

Аксоны альфа-мотонейронов в составе толстых двигательных волокон типа А-альфа образуют нервно – мышечные синапсы с экстрафузальными волокнами скелетной мышцы и формируют нейромоторные единицы.

Гамма-мотонейроны по тонким нервным волокнам А-гамма, осуществляют иннервацию мышечных элементов интрафузальных волокон.

Мышечные веретена:

  • Мышечные веретена возбуждаются только при растяжении мышцы, определяя ее длину.
  • Также веретена стабилизируют положение тела и участвуют в поддержании тонуса мышцы.

Нисходящие влияния вышележащих отделов головного мозга корригируют работу альфа и гамма мотонейронов, меняя тонус мышц.

II. Проводниковая функция

Восходящие импульсы: от периферических кожных, проприоцептивных и висцеральных рецепторов по афферентным путям в ЦНС (к вышележащим отделам).

По проводящим путям, пролегающим в задних и боковых столбахспинного мозга, в ствол, мозжечок и кору больших полушарий (КБП).

Афферентные пути:

  • Пути Голля и Бурдаха – проприоцептивная, тактильная чувствительность и стереогноз.
  • Спиноталамический тракт – болевая, температурная, тактильная чувствительность.
  • Спиномозжечковые тракты (передний Говерса и задний Флексинга) – глубокая чувствительность, мышечный тонус.

Нисходящие импульсы:

От вышележащих отделов ЦНС (двигательных зон коры, стволамозга) по проводящим путям передних и боковых столбов спинного мозга кмотонейронам передних рогов.

Эти импульсы оказывают возбуждающее или тормозное действиена вставочные и моторные нейроны спинного мозга.

Эфферентные пути:

  • Пирамидный путь (прямой и перекрещенный) – начинается в двигательной зоне коры.
  • Экстрапирамидные пути:
    • ретикуло-спинальный,
    • рубро-спинальный,
    • текто-спинальный,
    • вестибуло-спинальный,
    • оливо-спинальный.

Все эфферентные пути заканчиваются на мотонейронах передних рогов спинного мозга. Пирамидный тракт напрямую. Экстрапирамидные тракты через вставочные нейроны.

Вестибулоспинальный и ретикулоспинальный пути оказывают преимущественное влияние на мышцы проксимальных отделов конечностей.

Руброспинальный и кортикоспинальный пути влияют на мышцы дистальных отделов конечностей (кисти, предплечья).

Другая большая группа рефлексов – это двигательные кожно-мышечные рефлексы (сгибательный и др.).

Сгибательный рефлекс возникает при раздражении кожных рецепторов (тактильных, температурных, болевых).

Ствол мозга

Ствол мозга включает:

  • продолговатый мозг,
  • мост,
  • средний мозг.

Функции ствола мозга:

  • отвечает за примитивные формы поведения,
  • поддерживает жизненно-важные функции.

Продолговатый мозг

Продолговатый мозг (medulla oblongata) – 2,5 – 3 см, расположен между мостом и местом отхождения корешка C1 спинного мозга.

Центры продолговатого мозга

  • Жизненно-важные вегетативные центры: дыхания, сосудисто-двигательный центр, пищеварения.
  • Защитные рефлексы: чихания, кашля, рвоты, мигания, сосания, жевания, глотания.
  • Центры, управляющие мускулатурой конечностей и туловища (латеральный ретикулоспинальный тракт).

В продолговатом мозге находятся ядра IX, X, XI, XII пар черепных нервов, которые участвуют в иннервации головы и шеи.

X пара иннервирует внутренние органы грудной и брюшной полостей.

Варолиев мост

Мост (открыт ученым Варолио в 1560 году) располагается между средним и продолговатым мозгом.

Рефлекторная функция:

  1. В пределах моста расположены ядра V, VI, VII и VIII пары черепных нервов, иннервирующих голову.
  2. Собственные нейроны моста образуют его ретикулярную формацию.
  3. РФ моста влияет на кору мозга, вызывая ее активацию или торможение.

Среди этих нейронов локализуется группа ядер, образующих пневмотакстический центр, регулирующий смену вдоха и выдоха.

Вестибулярные ядра:

  • верхнее ядро Бехтерева,
  • нижнее вестибулярное ядро Роллера,
  • медиальное ядро Швальбе,
  • латеральное ядро Дейтерса.

Ядра совместно с мозжечком принимают участие в сохранении равновесия и тонуса скелетной мускулатуры.

От ядра Дейтерса идет латеральный вестибулоспинальный путь.

Возбуждающее действие на мотонейроны разгибателей и тормозящее – на мотонейроны сгибателей.

При раздражении вестибулярного аппарата мышечный тонусперераспределяется таким образом, чтобы сохранить равновесие.

Средний мозг

  • четверохолмие (крыша),
  • ножки мозга,
  • Сильвиев водопровод.

Рефлекторная функция

Ядра среднего мозга выполняют ряд важный рефлекторныхфункций.

Передние бугры четверохолмия – подкорковые зрительные центры.

  • Зрительный ориентировочный рефлекс (движение глаз и поворот головы к свету).
  • Вместе с вегетативным ядром Якубовича IIIпары (глазодвигательный нерв) участвуют в зрачковом рефлексе, аккомодации, конвергенции, фиксации взора и слежения за движущимися объектами.

Задние бугры четверохолмия – это первичные подкорковые слуховые центры.

  • Ориентировочный слуховой рефлекс (настораживание ушей у животных).
  • Поворот головы по направлению к новому звуку.

Ядра четверохолмия обеспечивают сторожевой рефлекс. Человек с нарушениями в этой области неспособен быстро реагировать на неожиданный раздражитель.

Черная субстанция:

  • содержит пигмент меланин,
  • часть экстрапирамидной двигательной системы,
  • регулирует акты глотания и жевания,
  • участвует в регуляции пластического тонуса мышц,
  • участвует в организации эмоционального поведения и тонкой моторики (мелкие движения пальцев рук),
  • синтезирует дофамин, который транспортируется к базальным ганглиям.

Красные ядра:

  • располагаются в верхней части каждой ножки мозга,
  • цвет обусловлен густой капиллярной сетью,
  • содержат железо,
  • связаны с корой головного мозга (нисходящие пути), подкорковыми ядрами и мозжечком.

Нарушение связи красного ядра с РФ продолговатого мозга ведет к децеребрационной ригидности у животных.

Децеребрационная ригидность (спастичность) или контрактильный тонус открыт Ч. Шеррингтоном. Возникает при перерезке ствола мозга между передними и задними буграми четверохолмия. Красные ядра остаются выше места перерезки.

У животного развивается резкое повышение тонуса мышц– разгибателей (конечности вытянуты, голова запрокинута, спина выгнута, хвост приподнят). Животное можно поставить на лапы, оно будет стоять на вытянутых ногах, если не нарушен центр тяжести.

У человека подобное состояние (опистотонус) возникает присдавлении среднего мозга при внутримозговых гематомах, опухолях, отеке мозга,травме.

Механизм ригидности:

Выключается активирующее влияние красных ядер и кортикоспинального пути на сгибатели, что увеличивает влияние вестибулярных ядер (ядро Дейтерса) на разгибатели.

Устраняется тормозное влияние красного ядра на ядро Дейтерса, которое растормаживается, еще более усиливая тонус разгибателей.

Таким образом, создаются все условия для значительного повышения тонуса мышц разгибателей и формирования мышечной спастичности.

Разделы с похожими страницами

Источник: https://medfsh.ru/teoriya/teoriya-po-normalnoy-fiziologii/lektsii-po-normalnoj-fiziologii/chastnaya-fiziologiya-tsentralnoj-nervnoj-sistemy

Нейромоторные единицы

Нейромоторная двигательная единица

Скелетные мышцы позвоночных животных снабжаются двигательными нервными волокнами нейронов. находящихся в передних рогах спинного мозга.

Эти нервные волокна делятся на веточки, образующие нервные сплетения, расположенные между мышечными клетками, или мышечными волокнами, от которых отходят отдельные нервные волокна, соединенные с группой мышечных волокон.

Каждое нервное волокно, иннервирующее группу мышечных волокон, называется нейромоторной или моторной единицей.

Различают нейромоторные единицы, участвующие в фазных движениях (сокращениях и расслаблениях) и в длительных напряжениях мышц. В скелетных мышцах, как правило, содержатся обе группы волокон.

Фазные единицы разделяются на быстрые и медленные, в которых скорость проведения возбуждения в несколько раз меньше, чем в быстрых, а его возникновение и продолжительность сокращения больше. В мышцах человека, осуществляющих быстрые и точные движения, например в глазных мышцах, в одну моторную единицу, входит 3-6, а в мышцах пальцев рук 10-25 мышечных волокон.

В мышцах, производящих медленные движения регуляции позы человека, количество мышечных волокон в одной моторной единице доходит до 2000-3000, в икроножной мышце оно составляет примерно 2000. 

Мионевральный аппарат позвоночных

Место контакта нервного волокна с мышечным называется мионевральным аппаратом или нервно-мышечным синапсом. У позвоночных животных к каждому мионевральному аппарату подходит одна толстая мякотная веточка двигательного нервного волокна, а к капиллярам, прилегающим к мышечным волокнам, подходит одно тонкое мякотное волокно симпатической нервной системы.

Двигательное нервное волокно лишается миелиновой оболочки в месте ответвления концевой веточки, образующей контакты с моторной концевой пластинкой. В концевых веточках больше митохондрий, чем в аксоне.

Мембраны нервного окончания и двигательной концевой пластинки разделены синаптической щелью шириной 50 нм. По краям контакта мембран синаптическая щель открывается во внеклеточное пространство.

В пресинаптическом нервном окончании, непосредственно у пресинаптической щели, много пузырьков ацетилхолина диаметром около 50 нм. Мышечное волокно имеет только один синапс.

Площадь мионеврального аппарата млекопитающих 2-3 мкм2, общее количество пузырьков ацетилхолина около 20 тыс., они занимают примерно 20% объема аппарата.

На постсинаптической мембране около 4 млн. холинорецепторов, связывающих ацетилхолин, что увеличивает ее проницаемость для ионов Na и К, и холинэстеразных, в которых ацетилхолин разрушается ферментом холинэстеразой.

Ацетилхолин как медиатор или посредник в передаче возбуждения обеспечивает прохождение импульсов возбуждения через мионевральный аппарат с нерва на мышцу. Разрушение ацетилхолина прекращает нервно-мышечную передачу.

Эта передача облегчается суммацией мельчайших порций — квантов ацетилхолина, поступающих из каждого пузырька, а также увеличением общего количества ацетилхолина. Таким образом, возбуждение в мионевральном аппарате возрастает градуально.

В покое в отсутствие нервного импульса выделяется небольшое количество ацетилхолина, но беспорядочно, асинхронно, что приводит к возникновению слабых, миниатюрных электрических потенциалов.

При поступлении одиночного нервного импульса кванты ацетилхолина выделяются синхронно и в большом количестве, что приводит к образованию в мионевральном аппарате потенциала, в 50-80 раз превышающего амплитуду слабого потенциала в покое. Этот потенциал возбуждает мышечные волокна.

После прекращения раздражения двигательного нерва, вызывавшего тетаническое сокращение мышцы, возбуждение мионевральных аппаратов прекращается не сразу, а продолжается некоторое время. После длительного тетанического сокращения наблюдается временное угнетение передачи импульсов как результат выделения большого количества ацетилхолина. Наоборот, когда тетаническое сокращение продолжается недолго и секреция ацетилхолина мала, после прекращения раздражения нерва возбуждение мионеврального аппарата усиливается. При оптимальном ритме раздражения повышается экономичность расходования ацетилхолина на проведение каждого нервного импульса.

Сокращение моторных единиц

Сокращение одной нейромоторной единицы зависит от ее функционального состояния, а целой мышцы — от количества функционирующих нейромоторных единиц. Наибольшее напряжение развивает нейромоторная единица икроножной и камбаловидной мышц, поддерживающих позу стояния.

При увеличении силы раздражения скелетной мышцы высота ее сокращения возрастает. Это зависит от количества возбужденных моторных единиц, число которых увеличивается по мере повышения силы раздражения (К. Люкас, 1910).

Мышечные волокна, составляющие одну моторную единицу, сокращаются синхронно, одновременно, но мышечные волокна разных моторных единиц сокращаются, как правило, асинхронно, разновременно, так как разные моторные единицы иннервируются различными нейронами спинного мозга.

В результате суммации сокращений отдельных моторных единиц получается гладкий тетанус, высота которого градуально повышается по мере увеличения числа сокращающихся моторных единиц.

Следовательно, возрастание силы сокращения скелетной мышцы градуально зависит от числа сокращенных моторных единиц, а также обусловлено критическим пределом силы раздражения.

Сила сокращения мышцы зависит также от частоты возбуждения каждой моторной единицы. При небольшом напряжении мышцы частота импульсов возбуждения каждой моторной единицы равна 5-10 в 1 с, а при повышении напряжения — 20-50 до 150 в 1 с. Таким образом, высота сокращения мышцы возрастает также в зависимости ог частоты ее раздражения, но до известного критического предела.

Однако сила и частота раздражения определяют уровень обмена вещества в моторных единицах, который имеет решающее значение для градуального возрастания силы, или напряжения, скелетных мышц. Частота и сила импульсов регулируются по двигательным и вегетативным нервам скелетных мышц.

Сокращение и напряжение целой мышцы может долго продолжаться без утомления, так как в естественных условиях сокращение и напряжение мышц — результат суммации неодновременных, асинхронных сокращений и напряжений разных нейромоторных единиц.

Источник: https://www.polnaja-jenciklopedija.ru/biologiya/neyromotornye-edinitsy.html

Двигательные единицы (ДЕ)

Нейромоторная двигательная единица

Дано понятие двигательной единицы (ДЕ) и описана ее структура. Приведена классификация ДЕ и соответствие ДЕ и типов мышечных волокон. Описан принцип размера и правило Хеннемана. Приведены данные об активации ДЕ при выполнении силовых упражнений в зависимости от величины отягощения.

Определение

Термин «двигательная единица» был предложен Е. Г. Лидделом и Ч.С. Шеррингтоном для обозначения группы мышечных волокон, иннервируемых терминалями (веточками) одного аксона.

В настоящее время под двигательной единицей (ДЕ) понимается элементарная функциональная единица мышцы, включающая в себя мотонейрон и иннервируемые им мышечные волокна.

Структура ДЕ

Войдя в мышцу, аксон мотонейрона разветвляется на множество веточек, каждая из которых иннервирует отдельное мышечное волокно. Таким образом, один мотонейрон иннервирует достаточно большое количество мышечных волокон (от нескольких единиц до нескольких тысяч), в то время как каждое мышечное волокно иннервируется только одним двигательным нейроном.

Установлено, что мышечные волокна, принадлежащие к одной ДЕ, рассредоточены по всей мышце, то есть принадлежат к разным мышечным пучкам.

Такое рассредоточенное (дисперсное) распределение мышечных волокон каждой ДЕ обеспечивает равномерное сокращение мышцы, когда в работу «включается» лишь некоторая часть ДЕ.

Следует отметить, что в одну ДЕ составляют мышечные волокна, обладающие одинаковыми свойствами. Посредством активации различных ДЕ центральная нервная система управляет активностью всей мышцы.

Размер ДЕ (иннервационное отношение, коэффициент иннервации)

Размер ДЕ  —  это количество мышечных волокон, которые иннервируются одним мотонейроном. Чтобы определить этот показатель  определяют количество мышечных волокон в скелетной мышце и количество мотонейронов, которые инннервируют эти мышечные волокна (табл.1).  Иногда в литературе размер ДЕ называют иннервационным отношением или коэффициентом иннервации.

Всякий раз, когда  активируется мотонейрон, он посылает потенциалы действия ко всем мышечным волокнам, которые он иннервирует.

Поэтому, чем ниже коэффициент иннервации, тем совершеннее контроль со стороны нервной системы за мышечными волокнами.

По коэффициенту иннервации (размеру ДЕ) можно судить о количестве веточек, необходимых аксону мотонейрона, чтобы иннервировать все входящие в ДЕ мышечные волокна.

Табл. 1 — Количество мышечных волокон, количество ДЕ (мотонейронов) и размер ДЕ в различных скелетных мышцах человека

МышцаКоличество мышечных волоконКоличество ДЕРазмер ДЕ
Передняя большеберцовая250090445562
Медиальная головка икроножной мышцы11203651934579
Наружная прямая мышца глаза2673029709
Плечелучевая136530333410

С возрастом количество ДЕ, приходящихся на одну мышцу уменьшается.  Это связано с тем, что уменьшается количество мотонейронов, которые иннервируют отдельную мышцу. Вследствие этого количество мышечных волокон по мере старения организма человека также уменьшается.

Классификации ДЕ

Существуют различные классификации ДЕ. Исходя из значимости для организма, Р. Берк с соавт. (R.E. Burke, 1973) предложил разделять ДЕ по сочетанию двух признаков – скорости сокращения и устойчивости к утомлению.

По этой классификации ДЕ делятся на три типа: S (slow) – медленные, устойчивые к утомлению; FR (fast resistant) – быстрые, устойчивые к утомлению, FF (fast fatigable) – быстрые, быстроутомляемые.

Этим ДЕ соответствуют различные типы мышечных волокон (табл. 1).

Таблица 1 — Соответствие типов ДЕ и мышечных волокон

Тип ДЕSFRFF
Тип мышечного волокнаI типIIA типIIB тип

Строение и функции мотонейрона соответствуют морфологическим характеристикам мышечных волокон, которые он иннервирует. Так, мотонейрон ДЕ S типа имеет небольшое клеточное тело и иннервирует от 10 до 180 мышечных волокон, а мотонейрон ДЕ FF типа имеет большое клеточное тело и иннервирует от 300 до 800 мышечных волокон (Дж.Х. Уилмор, Д.Л. Костилл, 1997) (рис.1).

Рис. 1. Гистохимические и физиологические свойства трех основных типов ДЕ и мышечных волокон (R.E. Burke, 1973)

В табл. 2 представлено количество  мышечных волокон и количество ДЕ в различных мышцах человека

Принцип размера или правило Хеннемана

ДЕ S типа имеют низкий порог активации, поэтому при развитии силы мышцы они включаются в работу первыми. После этого активируются ДЕ FR типа. ДЕ FF типа обладают высоким порогом активации, поэтому при развитии усилия в мышце они активируются последними.

Благодаря тому, что мышечные волокна, принадлежащие различным ДЕ, рассредоточены по всей мышце, а не находятся в одном пучке, развитие силы мышцы характеризуется плавностью.

Однако из-за того, что между соседними мышечными волокнами существуют соединительнотканные связи, при сокращении одних мышечных волокон, например, входящих в состав ДЕ S типа, и расслабленном состоянии других (например, входящих в состав ДЕ FF типа) должны возникать силы трения, обусловливающие высокую вязкость мышцы. Г.В.

 Васюков (1967) показал, что при небольших напряжениях мышцы (30% от максимума)  ее вязкость  максимальна. При дальнейшем напряжении мышцы, когда одновременно возбуждено много мышечных волокон, вязкость мышцы скачкообразно уменьшается.

Более подробно строение и функции мышц описаны в моих книгах “Гипертрофия скелетных мышц человека” и “Биомеханика мышц”

Активация ДЕ в зависимости от различной величины внешней нагрузки

В настоящее время установлено, что в зависимости от величины внешнего отягощения активируются разные ДЕ. Эти данные представлены в табл. 3

Таблица 33 – Активация ДЕ в зависимости от различной степени отягощения.

Степень отягощения, %Особенности активации ДЕ
20-30% от максимальногоРекрутируются ДЕ S типа.
От 30 до 50% от максимальногоРекрутируются ДЕ S и FR типа
От 50 до 70 % от максимальногоРекрутируются ДЕ: S, FR FF типов.
Более 70% от максимумаСинхронизация активности ДЕ, то есть одновременное возбуждение большинства мышечных волокон.

С уважением, А.В. Самсонова

Источник: https://allasamsonova.ru/dvigatelnye-edinicy-de/

Медицина и здоровье
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: